SOLITON COLLISIONS AND GHOST PARTICLE RADIATION
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ABSTRACT. We mathematically investigate particle collision for three-soliton solutions of the Korteweg-de
Vries (KdV) equation and describe its corresponding ghost particle radiation. In particular, we prove that
a collision between any two soliton particles results in an exchange of particle identities and an emission
of a ghost particle pair. Moreover, collisions between any two ghost particles results in their fusion and
is accompanied by fission of the corresponding anti-ghost particle. Mass and momentum are conserved for
both soliton particle decay and ghost particle interaction at all times.
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1. INTRODUCTION

The subject of solitons as a nonlinear phenomenon is well established in the literature and much has been
written about its asymptotic and particle-like properties (cf. [M], [DJ], [AC]). Yet the physical process
of how solitons actually behave during collision has remained mysterious for the most part. Very little
work has addressed the identity of Korteweg-de Vries (KdV) solitons as particles before and after collision.
Historically, it was Zabusky and Kruskal [ZK] who originally proposed that solitons pass through each other
cleanly with only a change in ”phase shift”, a viewpoint that was supported mathematically by P.D. Lax [La].
Two decades later, Bowtell and Stuart [BS] countered with a more consistent particle-like interpretation by
proposing that solitons actually bounce off each other and exchange identities. Since KdV solitons must
have distinct masses, the exchange of mass that occurs during collision was then explained as a continuous
siphoning process, whereby the smaller soliton siphons mass from the larger soliton through the underlying
baseline. This explanation is rather unnatural based on our physical understanding of particles. Others
investigations have been made to understand collisions involving KdV solitons, but such works have failed
to shed new light in resolving the debate (cf. citeHM, [Le], [MC]).

In [N], the author has presented what seems to be the correct argument for explaining two-soliton collisions.
This was achieved by mathematically demonstrating that each soliton particle decays into two sub-particles
upon collision. This break-up allows solitons to exchange identities and to emit a ‘ghost’ particle pair
necessary to maintain conservation of mass and momentum. Such a solution was found by considering a
particle-decomposition of each two-soliton solution of the Korteweg-de Vries equation in terms of eigenvalues.
These eigenvalues are obtained from the corresponding soliton matrix defining the solution and isolate the
decay of individual solitons. In particular, given two colliding solitons, e.g. those labeled as particles 1 and
2 in Figure 1, it was proven that each soliton splits into two upon collison. As a result there is an exchange
of particle identities and an emission of a ghost particle pair as observed by particles 3 and 4 in Figure 1.
Asymptotically, these ghost particles have the same sech-shaped profiles as solitons. Moreover, it was proven
that conservation of mass and momentum holds in the decay of each soliton particle for all times. This
demonstrates that our theory is consistent with the laws of classical mechanics.
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FI1GURE 2. Two-Ghost Particle Collision

In this paper, we mathematically investigate particle decay for three-soliton solutions of the Korteweg-de
Vries equation and describe the resulting interaction between ghost particles that are created in the process.
Again, we find that each soliton collision results in the exchange of particle identities and the emission of
a dual ‘ghost’ particle pair (cf. Theorem 3.1). As a novel feature, we discover that it is possible for ghost
particles themselves to collide in which case they fuse to form a third ghost particle (cf. Theorem 4.2). Figure
2 illustrates two ghost particles, labeled as 1 and 2, that collide and fuse to become particle 3. Moreover,
this fusion process is always complemented by fission of the corresponding anti-particle, i.e. the particle dual
to particle 3, and obeys Richard Feynman’s interpretation of anti-particles as particles moving backwards in
time.

A duality therefore seems to exist between soliton interaction and ghost particle interaction. Our goal
is to expose this duality by demonstrating that both interactions satisfy the same conservation laws and
are equivalent in the sense that knowledge of one uniquely determines the other. Such an understanding of
ghost particle radiation is important towards our broader understanding of solitons as nonlinear particles.
Moreover, our theory of ghost particles is not far-fetched since it is now widely accepted that solitons can
experience inelastic collisions and interact in a highly nontrivial manner. Indeed, certain kinds of optical
vector solitons are known to split, fuse, and exchange energies during collision (cf. [AS], [KL], [KH])).
Moreover, this type of behavior seems to be generic rather than exceptional for solitons. Since solitons have
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already found important applications in many areas of physics and engineering (cf. [AA], [HK], [Ra], [Re]),
we expect these collision interactions to provide new applications in the future (cf. [JSS]).

Our paper is organized as follows. We begin by reviewing the eigenvalue-decomposition that is used to
isolate the decay of solitons during collision. We then analysis the asymptotic behavior of these eigenvalues
for three-solitons to establish mass exchange, ghost particle radiation, and various conservation laws. Lastly,
we describe the fusion and fission of ghost particles for three-soliton collisions.

2. PRELIMINARIES

2.1. N-Solitons. Let N be a positive integer and assume u(z, t) to be an N-soliton solution of the KAV equa-
tion. The Miura transformation makes u become the potential function for the time-independent Schrodinger
equation,

(1) Yaa = [A —u(z,0)]¢p = 0.
Since u is assumed to be reflectionless, the initial scattering data for u(z,0) contains only a discrete energy
spectrum. This means that A\ takes on a discrete set of N negative energy eigenvalues {A1, Aa, ..., Ax } with

corresponding eigenfunctions {¢1, 2, ...,¢/n}. As standard we normalize these eigenfunctions and compute
their normalized factors ¢, commonly referred to as ‘phase shifts’:

T—>—00

(2) / Yide =1, ¢, = lim ef%qy,.

The initial scattering data is then used to produce the N-soliton formula for u (cf. [GGKM], [H], [WT]):

82
(3) u(z,t) = —2@ log det(I + A).

Here, the N x N soliton matriz A has entries defined by

cm(t)en(t a3
(4) A= (amn); amn = %e(/@mﬂenﬂ; cn(t) = cpe 4knt’
where the spectral parameter k, > 0 is defined via the relation \, = —k2.

2.2. Soliton Particles. We now turn to developing our working definition of a soliton particle. It is well
known that A is symmetric and positive definite (cf. [KM],[GGKM],[WT]). This allows us to diagonalize it
so that

(5) U'AU =D

where D = diag(p, ..., un) is a diagonal matrix, {u; > ... > pn} consists of the (ordered) set of real
positive eigenvalues of A, and U = (uy, ..., uy) is the orthogonal matrix consisting of an orthonormal basis
of eigenvectors {u,} of A. It follows that we can write u(z,t) in terms of {u,} which we shall refer to as
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decay eigenvalues of u:

82
u(z,t) = —2—— logdet(I + A)

ox?
= —28—2 log det[U (I + A)U]
T T 92 %
32
= —2@ log det(I + D)
9?0
=253 lognl;[l[l + tn(z,1)]

nz::l —2@ log[1 + pn(x,t)].

(6)

Definition 2.3. We define
(7 sn(vn) = —2k2sech?(kpvy), n=1,...,N,

to be the n-th soliton particle of u where v, = z — 4k2t. Moreover, we shall refer to

®) un (1) = <2 1og{1 + a1

as the decay function of s, and to the sum u = Zgil U, as derived in (6) as the decay decomposition of w.

Next, we introduce our notion of a ‘ghost’ particle which is needed to explain our theory of soliton
interaction.

Definition 2.4. Assume m and n are positive integers with m < n. We define

2 e2kmVmn cmen  o(km~+kn)Vmn
(9) G, = = 2k Fom+hy
m _emen_ o(km+kn)Vmn L0 o2knVmn
Kk +kn 2k,

to be the 2 x 2 ghost submatriz of A corresponding to the pair {m,n}, where vy, = vpm =  — 4k2,,,t and
kmn = k:?n + ko k, + k:fl In addition, denote by ., and .., to be the eigenvalues of G, and order them
so that Vum > Ymn-

2k —kn)Omn — Conk

Next, define 0,5, = §,,,, via the relation e = #%~. Then we shall refer to
2
(10) Grm (Vm + Onm) = _28112 log Ynm
as the ghost particle corresponding to the pair {m,n} and
82
(11) gmn(”mn + 6mn) = _2—61/2 IOg Ymn

as its anti-ghost particle.

Theorem 2.5. ([N], Theorem 3.6) The particles gnm and gmn enjoy the following properties:
cosh [(k1 — k2)vpm]

Ezif:zgz cosh®[(ky — ko) Vnm] — 1

(Z) gnm(ynm) = 8k ks

]3/2‘

(”) gmn(”mn + 5mn) = _gnm(ynm + 6nm)

(iii) /_ T o) = Ak — E).
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(1) Gmn(Vimn + Omn) ~ O(sech2[(km = kn) (Wmn + 6mn)]) as vmp — too.

(km B kn)2(k’m + kn)
(v) |gmn] < N

Remark 2.6. We remark that Theorem 2.5 shows the ghost particle g,,, can be viewed as a nonlinear
difference between the soliton particles s, and s, as defined by (7).

with equality holding precisely when Vpm = —6mn.

2.7. Asymptotic Matrices. Since we shall be investigating the asymptotic behavior of the eigenvalues of
soliton matrices, the following notion of asmptotic matrices will be useful to us.

Definition 2.8. Let A(z,t) and B(x,t) be N x N matrices in the variables z and ¢ and C(z) an N x N
matrix depending on x only. We shall say that A converges uniformly in x on arbitrary compact subsets of
R, or simply converges, to C as t — +o0, and write A - C, to mean

(12) t_l}goo A(z,t) = C(x)

uniformly in z on arbitrary compact subsets of R with respect to the Euclidean norm, i.e. || A(z,t)—C(z) || =
0, where || - || is defined by

N
(13) FAIP =" lamal*.

Moreover, we shall say that A is asymptotic to B ast — +o00, and write A ~ B, to mean A(z,t)—B(xz,t) % 0
(the zero matrix) as t — +o0.

The following standard result will be useful to us.
Lemma 2.9. ([MM], II1.3.5.10, p. 163) Let A(x,t), B(z,t) and C(z) be N x N normal matrices with
corresponding sets of eigenvalues {ay(z,t),...,an(z,t)}, {fi(z,t),...,On(x,t)} and {y1(x),...,yn(z)}, re-
spectively.

(i) If A% C ast — +oo, then there exists a permutation o € Sy of {1,..., N} such that a,, — Yo(n) 45
t — oo for everyn=1,....N.

(ii) If A ~ B as t — +oo, then there exists a permutation o € Sx of {1,..., N} such that o, — Ben — 0 as
t — oo for everyn=1,....N.

3. PARTICLE DECAY OF THREE-SOLITONS

In this section we assume N = 3 and investigate the asymptotic behavior of the decay functions u;, us
and ugz as a means of understanding soliton interaction. We are now ready to present our theorem describing
particle decay of three-solitons.

Theorem 3.1. (N = 3) The following asymptotic relations hold for uy, us, and us:

(i) wi: sf—)sg'-i—g;'2+g;'1,
(i) wua: 85 — 55+ gk + 95 + 91y,
(iii) us : S5 — si" + gf'3,

where in the notation above st = s,(vn + AL), gt = gonWmn + AL,), and each asymptotic equation

indicates behavior for t — —oo and for t — co. For uy say, this would mean

(14a) lim w; = s7, lim wu; = s,
vy fixed vo fixed
t——o0 t— o0
(14b) lim wu; = gfg, lim wu; = g;g..
vio fixed vog fixed

t—00 t—o00
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FI1GURE 3. Space-time plots of three-soliton decay: u = uy + us + us

Moreover, the relative phase shifts A, , A}, and AT

mm= l%k' .

2%, H W@ﬁned by (assuming m < n)

(15a) iy — Cn N
02 (k‘n — k‘l)Q
(15b) ot = 2 ]
2kn =% (ko + ki)
2 H (ki — ki)?
)2
(150) lhm-ayag, 2 2 i o R
G (ki ka)?
. 2
2k, L (ki + k)

Space-time plots corresponding to the asymptotic behavior described in Theorem 3.1 are drawn in Figure
3. We note that this asymptotic behavior is independent of the order of soliton collisions, i.e. independent
of whether s; collides with s first or sy collides with ss first.

Proof of Theorem 3.1. Our approach to proving (i), (ii), and (iii) basically involves analyzing each decay
function from the perspective of its relevant moving frames:

Proof of (i): We divide the argument into cases by treating each of the four moving frames {vy, va, v21,v32}
as a separate case:

CASE I: Assume v, is fixed. Then it follows from (50) that

2
(16) A, t) 5 D= L ehnp,
2%,

as t — —oc where Eq; is the 3 x 3 elementary matrix with 1 in its (1,1)-entry and 0’s everywhere else. This

is because the entries of A — D consist of decaying exponential terms. Since A and D are Hermitian, we
2

can apply Lemma 2.9 to obtain an ordering o € S3 of the eigenvalues {d; = ;Tlle%“’l,dg =0,d3 = 0} of

D so that p, — dy(n) as t — —oo. In fact, o will always be the identity element by our ordering of the
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eigenvalues. In particular, this implies that p; % dy ast — —oo and hence

. ) 92
lim uw; = lim —2wlog(1+u1)

vy fixed vy fixed
t——o0 t——oc0
82 02
= —2——log(l + —L¢*11
8.’172 g( Qk'l )
=s1(r1 + A7),

where we have used uniform convergence in x to pass the limit through the differentiation.

CASE II: Assume vj3 is fixed. Applying an argument similar to that used in CASE I, we find that

lim wu; = s3(vs + AT).
vy fixed
t—o0

CASE III: Assume v9; is fixed. In this case, it is more appropriate to determine the asymptotic behavior of
uy as t — oo by working with the matrix A;» as defined by (53) and its eigenvalue ui? because of (53). It
follows from part (ii) of Lemma A.1 that

u (G 0
(17) A12(V12,t) — < 62 0)

as t — oo. Here, G5 is the 2 x 2 ghost principal submatrix of A defined by (53). Since G2 has eigenvalues
Y12 and 71 with 721 > 12, Lemma 2.9 says that u%l 5 791 as t — oo. We then conclude from (57) that

. . 9?
lim w; = lim —2@10g(1+u1)

vop fixed vop fixed
t—o00 t—o00

lim _28_210g (efs(kiqurkpki)t +M21)
voy fixed 8,’172 1
t—o0

2

0
—2@ log 21

go1(va1 + AF),

as desired.

CASE IV: Assume v3; is fixed. We shall let the reader check that an argument analogous to CASE IIT (with
vo fixed) can be applied to prove that

3 — +
hm Uy = 932(1132 + A32).
v3o fixed
t—o0

This completes the proof of part (i).

Proof of (ii): We follow (i) by applying a similar analysis to us and consider four separate cases corresponding
to the four relevant moving frames vs, va3, 31, and vis:

CASE I: Assume v, is fixed. We first consider the situation where t - —o0o0. Now, depending on whether s;
and sy collide first or sy and s3 collide first, we have that either

(18) Fey (k2 — k2) + ks (k2 — k2) > 0 or ky (k2 — k2) + ks (k2 — k2) < 0.
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If ki (k2 — k?) + k3 (k2 — k2) > 0, then it follows from (50) that A is asymptotic to

4 e2k1va+8k (k3 —k1)t _c1es g(kitka)vatdki(k3—kD)t )
~ 2k1 k1+ko
(19) A= _ccs (kitka)vataks(k3—kD)t K= o2kavo 0
k1+ko 2ko

0 0 0

as t — —oo. Since A diverges as t — —oc, we shall work with its inverse instead. Using the fact that A
contains the 2 x 2 ghost principal submatrix G2, we find that

< ou (k1 +ko)?2ky
9 A 1 ( 1 2k21/2E
(20) MCEYSE Eh

as t - —oo. As ps is defined to be the second largest eigenvalue of A, this implies

_ u (k1 + k2)2 2ky _

21 1 ) = ( 2kava
( ) :u2 (l/Qa ) (kl . k2)2 C% €

or equivalently,

u (‘31 ‘32) 2 2k
22 us(vs. t) — 2V2

as t — —oo. On the other hand, if ki (k3 — k?) + ks (k3 — k2) < 0, then it follows again from (50) that A is
asymptotic to

%ezkluﬁskl(k}kf)t e ek tke)vatakn (K3 —kDE 5
~ 1 1+k2
(23) A= _cica (kitka)votdks(k3—k})t 5 p2kovs 0
k1+k2 R 2k2
a3 0 0

2 2
where a13 = ;4% e(kiths)vataky (k3 —kD)t+aka(k3=k3)t a5 ¢ — _co. By computing the inverse of A, we find

that (20) again holds and therefore (22) holds. Hence,

82
lim wy = lim —2——log(1 + )
vy fixed vy fixed ozx?
t——o0 t——o0

27 1og (14 Bk & o,
a2 U+ Ra)? 2k

= 52(1/2 + AQ_)

Let us now consider the situation where ¢ — co. By copying the argument used for t - —oo, we find that

u, (ks — k3)? ‘32 2k
24 t —_— 2v2
(24) p2(va,t) — (ko + k3)? 2k,

as t — oo. Hence,
32
lim wuy = lim —2—-—log(1 + pus)

vy fixed vy fixed 8
t—oo t—oo

2.9 1og (14 2= ka)® & o,
a dx? (k2 + k3)? 2k,

= so(va + A;")
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CASE II: Assume v» is fixed. It follows from the results of (i), CASE III, that pd? = v15 as t — oc. Hence,

. . 82
Jim oy = lim 2575 log(1+ pa)
t—oo t—oo
62 8 2 2
= 1l _9 2 —8(kTkatk1k3)t 12)
Vllufﬂed 281‘2 log (e + e
t—o00
62
=255 logmz

= g12(v12 + AB)-

CASE III: Assume v3; is fixed. Again, it will be more appropriate to work with the matrix A;3 as defined
by (53) and its eigenvalue ui® because of (57). However, since A;3 diverges in this case, we shall work with
its inverse instead. It then follows from (iv) of Lemma B.1 that

all 26%621611113 0 a13 kélt{:‘.)‘ e(k1+k3)l/13
- 1
1 u 1
(25) A13 (V13,t) — A13 = 0 0 0
a13 ki1+ks e(kl-‘rkg)l/ls O a33 @62]631113
Cc1C3 C
as t — oo where
(k1—k2)? ie2k1"13 0 (k1—ko)(ka—k3) cics e(k1+k3)ll13
B (k1+k2)2 2kq (k1+k2)(ka+ks) k1+ks
(26) Az =
(k1—k2)(k2—k3) cics e(k1+k3)u13 0 (ka—ks)? ie2k31/13

(k1+k2)(k2+k3) ki+ks (ka+ks)? 2ks

Now, denote by fi13 and fi3; to be the two positive eigenvalues of Ay3 with fi3; > fiz3. Then it follows that
usl, being the second largest eigenvalue of A3, converges uniformly to the largest eigenvalue of Ays, ie.
,u%l (V31,t) i) /NJ,31(1/31), as t — oo. Hence,

62
lim w; = lim 2Wlog(1 + p2)

v3y fixed v3y fixed T
t—o0 t—o0

0? (k2 2
: _ —8(k?ks+k1k3)t 31)
Vg}lmﬁxed 2 922 log (e + 5
t—00

0? -
—2w log fis1

= gs1(va1 + AF)),

where we have made use of the fact that A;3 has a 2 x 2 ghost principal submatrix of the form

a e2k1vis €183 o(k1+ks)ris
(27) Gi3 = L2k k1tky
&e(kﬁ%a)llls L3 p2k3viz
k1+ks 2ks

with normalization constants

_ ki —ka\ . ko — k3
28 = =
( ) C1 C1 <k1+k2>’03 C3 <k2+k3>’

CASE IV: Assume vs3 is fixed. The argument here is similar to that of (i), CASE III, and will be omitted.
This completes the proof of (ii).

Proof of (iii): Since the proof here follows from the results of (i) and (ii) and uses the same line of argument
as employed above, we shall end the proof of our theorem here. a
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Using equations (15a)-(15c), it is easy to verify that each decay functions in Theorem 3.1 conserve its
total phase shift as described below:

Corollary 3.2. Conservation of phase shift (N =3):
(i)  kiAy = kA3 — (ks — k2)Ag, — (k2 — k1)Ag,
(it) koly = koA — (k2 — k3)Ags — (ks — k1)Agy — (k1 — k2) AL,
(iii) ksAy = ki AT — (k1 — k3)AT;.
We next prove that each decay function conserves its mass and momentum.
Theorem 3.3. (i) Conservation of mass (N = 3):
oo
/ up(z,t)de = —4k,, n=1,..,N.
— 0o
(i1) Conservation of momentum (N = 3):
d oo
E/ Uy (2, t)dr = —16k>, n=1,..,N.

—0o0
Proof. (i) We directly calculate the integral
2 (@, tyde = 7 [—2%10g(1 + un)] dz
= [-22 log(1+ pn)]"

tn
—2 [1+un ] oo

= —4k,.

o0

Here, we have used the fact that p!, p, — 0 as z — —oo and i, /e2kn® — e=8kat+2kn AT and 1y, Je2kne
ke 8Kat+2kn AT a5 1 00 (cf. Appendix, Lemma C.1).

(ii) Integration by parts yields

L L L
Jo rup(z,t)de = [—22:% log(1 + “”)]Zoo -7 [—2% log(1 + 1n)] da
= [-208 log(1 + pa)]~ + 2 [log(1 + pn)]Z
= 2Ll 4 2log(1 + (L, 1))
~  —dk,L+ 4k, (L — 4k2t + A}})

as L — oo. It follows that

d [ee]
a/ zup(z,t)de = —16k3, n=1,2,

as desired. 0

—0o0

It follows immediately from Theorem 3.3 that
Corollary 3.4. If the center of mass of u, is defined to be
fix;o xun(z,t)de

(29) Tp(t) = m,

then x,,(t) moves with constant velocity 4k2, i.e.

dzy, 9
— =4k =1,..,3.
(30) dt n’ n ’ 13
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4. GHOST PARTICLE INTERACTION

In this section, we investigate the interaction of multiple ghost particles that may appear in each decay
function. Our approach is to decompose each decay function u,, into its ‘soliton’ and ‘ghost’ components:

(31) Uy = —2:—; log(1+ ptn)

" N (TAVEI

5 ~2 ] - [ ()
- 9 2

o =2 [ttip] 2 (amer) (50)

(35) = ul, + <lf—”un>2

Definition 4.1. We shall refer to

2 S ((remd

as the soliton component of u,,,

(37) ut = —2% log i

ox?

as the ghost function of u,, and

2
fin
38 9
(38) l%@+w>

as the ghost component of u,.

The following theorem tells us that the ghost functions defined by (37) in essence describe ghost particle
interaction.

Theorem 4.2. (N = 3) The decay of each ghost function u? is described as follows:
() ui:gs = g5+ 931,

(i) uf:gor + 913 + 932 = 935 + 931 + 91>,

(iil) ug : gis + 953 — 913,

where in the notation above gt = gmn(Vmn + AL,), AT

T (it )’ Hl (Kngivel )by (15¢), and A, = At
2 4 (=) =02 .
— — nm
given by (assuming m < n) 2 ﬁ (ki + kn)? ﬁ (kn + kz)2
9% o 2 2
2'3?7’% i=1 (ki — kn) i=n+1 (kn — ki)
f@ﬂ" f By (57), the asymptotic. behavior of uf, for n = 1,2,3 and ¢ — oo with respect to a ghost moving
rame vy, is exactly the same as the asymptotic behavior of u, established in the proof of Theorem 3.1, i.e.
lim wd = lim wu,.
vpq fixed vpq fixed

t—o0 t—o00
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Therefore, it remains to verify their behavior for ¢ — —oo. This however is straightforward and as the
following lemma demonstrates the behavior of u,, for ¢ - —oc is reflected in the behavior of —un_p1 for
t — oo modulo phase shift, i.e. subject to a change in the normalization constants of the soliton matrix
A(z,t). This completes the proof. O

Remark 4.3. Theorem 4.2 reveals then that two colliding ghost particles, say g7, and g3 appearing in u,
will fuse into a third ghost particle, gfg. By duality, we have that anti-particle g;; appearing in u{ will split

into g}, and g33. Both fusion and fission occurs in uj.

Lemma 4.4. Let A(z,t) and A(z,t) be soliton matrices with normalization constants {c,} and {¢,}, re-
spectively, that are related by

(41) P | -

_i<i
i=n or j=n

Moreover, let A(z,t) and A(z,t) have eigenvalues {fi,(x,t)} and {ji,(x,t)}, respectively. Then
1

42 —r,—t) = ——.

( ) /’L’ﬂ( ) /J/an+1($; t)

Proof. Using Lemma B.1, part (iii) of the Appendix, we find that the relation

(43) A=z, —t) = A (. t)

is valid from which our result follows immediately. O

As with soliton particle decay, we now demonstrate that ghost particle decay satisfies the same conserva-
tion laws.

Corollary 4.5. Conservation of ghost phase shift (N = 3):
(i) (ks — k1)Az = (k3 — ko) AL, + (k2 — k1)AS,, (i) (ko — k1)AL, + (k1 — k)AL + (ks — ko)A, =
(kg — k3) AL, + (ks — k1)AT, + (k1 — ko) ATy, (i63) (ky — ko) ALy + (ko — k3) Ay = (ky — k3)AT,.

Theorem 4.6. (i) Conservation of ghost mass (N = 3):

(44) / ud(z,t)de = —4(ky, — kny—n+1), n=12,3.
(ii) Conservation of ghost momentum (N = 3):

d o
(45) %/ aud (z, t)de = —16(k) — kX 1), n=1,2,3.

Proof. (i) We directly integrate to obtain

ffooou%(w,t)dac = foooo[ 8210g,un]d
_ [ 2i

loogo(un)]
—2 [un]_oo
= (kn — kN—n+1)-

Again, we have used the fact that u!, /e?*»® — c2(t), pn/e**»* — 2 (t)/(2k,) as * — o< (cf. Lemma C.1)
and pp(—z,—t) = 1/fin(x,t) as £ — oo (cf. Lemma 4.4).
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(ii) Tt suffices to integrate by parts and use the asymptotic relations described in (i) to obtain
5 aud(z, t)yde = [—2z2logua]™  — [0 [—22 log ] do

= -2 [20 —log(un(z,1))]
_16(k73L - k?\f—n+1)7

as desired. 0

Corollary 4.7. If the center of mass of ud is defined to be
ffooo zud (v, t)d
fix;o udy(z,t)dx

then x4 (t) moves with constant velocity 4(k2% + 2knkn_—ni1 + kX _ppq), i-e.

(46) 29 (t) =

dxy,
dt
Theorem 4.2 now allows us to make sense of the decomposition (35). Since pn,/(1+ pn) = 0ast — —oo
and /(1 4+ pn) — 1 as t — oo, it follows that the ghost component of u,, defined by (38) controls the
formation of ghost particles and that the soliton component of u,, defined by (36) controls the exchange of
soliton particle identities.

(47) = 4(k2 + 2knkN_nt1 + kN _pp1), n=1,..3.

Theorem 4.8. (N = 3) The decay of each soliton component u?, is described as follows:
(i) ui:sy = s,
(i) ud:sy; — sq,
(iil) uf:s; — 57
Concluding Remarks. We have shown that for KdV three-solitons a duality exists between soliton particle
interaction (Theorem 3.1) and ghost particle interaction (Theorem 4.2) and that both interactions satisfy
the same conservation laws. Naturally, these results should extend to an arbitrary number of solitons.
In particular, our techniques for analyzing the decay of the largest and smallest eigenvalues of the soliton
matrix A(z,t) should easily carry over. However, our analysis of the middle eigenvalue required us to consider
separately the two possible orderings of soliton collisions, which must also be done for N-solitons.

Lastly, we mention that our theory of soliton decay also applies to other well known partial differential
equations that exhibit soliton behavior, e.g. nonlinear Schrodinger (NLS) and Kadomtsev-Petviashvili (KP)

equations. Our preliminary investigations indeed show that such a phenomenon occurs. We shall take up
this matter in an upcoming paper.

APPENDIX A. MOVING FRAMES

It will be useful to write our soliton matrix A given by (4) in several different forms. One form involves
writing A in terms of the natural moving frames {v,}:

(48) A= (gemfpehmimthnm) mon =1, N.

Then using the relation
(49) Un = v + 4k, (K} — E2)t,
another form can be gotten for A by writing it purely in terms of fixed moving frame v;:

50 A = ( -emen oUbm+hn)vtdlln (F—k2)+hn (=D ) =1, .. N.
( ) ko +k ’ ’ 3t
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Next, it will also be useful to write A in terms of an arbitrary ghost moving frame v,, with p < ¢:

(51) A= (%4 m+kn>upq+4[km<k§q—ki)+kn<k§q—k3)1t)
(52) —e (kpkq+kpk§)tqu

Here, the matrix A,, appearing in (52) is defined as

(53) Ay = (%4 m+kn)upq+[qu(km>+qu<kn>]t)
where
(54) Fpi(z) = ac(kf,q —z%) - (kqu + kpkg).

Lemma A.1. Assume p < q. Then

(Z) qu(kp) = qu(kq) =0.

(i) Fpq(kn) <0 for ky < kp or kg < ky.
(i) Fpq(ky) > 0 for ky < ky,, < kq.

Proof. Since (i) is trivial, we shall only prove (ii) and (iii). To prove (ii), we first let the reader check that

(55) Fo(z) >0 for0<z</kZ/3
(56) Fy,(z) <0 forz>/kZ /3.

Then assuming k, < k, < \/k3,/3, it follows from (55) and part (i) of this lemma that Fj,(k,) < 0. A

similar argument can be used for the case of /k2, /3 < k; < ky to establish Fy,(k,) < 0. Part (iii) can be
handled in a similar fashion. O

(kikq+kpk§)t

Let {pf?, ..., uk?} denote the eigenvalues of A,,. Then u, pP4 and so

2 8 _ 2 2
wlog(l + pn) = 8—10g[e 8(kZkq+kpk2)t (e 8(k2kg+kpkl)t + pP%)]

9? —8(k2ky+kyk2)t pq
(57) = o5 log(e Mkt ),

AprrENDIX B. CAucHY MATRICES

We recall formulas involving determinants and inverses of soliton matrices which have the form of Cauchy
matrices. Let A and Ap, given by (4) and (53). Denote by C,,, to be the cofactor of @, in A and define

N 1 N 1 N
(58) a™m = H (k'z — kj) H (kz — k. ) H (kl + kj)'
. i<y . i<j i,
i=m or j=m i=n or j=n i=m or j=n

Lemma B.1. (¢f. [PS], p. 92)

N N N
(i) det(A):H(ki—k H H G +k Hc2 2hivi

N N N
(i) O = (<" [ k=) [T i =k) [I s +k ch Hc]

i< g !
ij#m i#m.j#n i#m FEn
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(iii) A7 = (e kmomthnrn) )

CmCn

(iv) A;} = (ﬂef(kmm)uqu[qu(kaqu(kn)}t)_

Cm Cn
AprPpPENDIX C. EIGENVALUE ASYMPTOTICS

We next prove certain asymptotic properties regarding eigenvalues of soliton matrices for N = 3. Let A
be a soliton matrix with eigenvalues {u,} and eigenvectors {u,,} which form an orthonormal basis since A
is symmetric.

Lemma C.1. (i) g, > 0 as x - —oo forn =1,2,3.
(ii) e~ 2knTpy, —s e BRAtH2ka AT g 1y 00 forn = 1,2, 3.

Proof. Part (i) is obvious since A converges to the zero matrix as ¢ — oco. We prove (ii) by treating each
eigenvalue separately. If j; is an eigenvalue of A, then e2¥12 4 is an eigenvalue of e~2¥1% A which converges
to the matrix e~ 8¥11+2k1A7 B as o — oo. It follows that ek, — e 8kit+2k AT By a similar argument,
the matrix e2k32 A=1 has e2%3% /i3 as an eigenvalue and by Lemma B.1-(iii) converges to e~8kit+2ksAd B
as © — oo. This proves that e~2¥s%y; converges to e~S¥3t+2ksA3  Lastly, we use the product formula
pi1p2pt3 = det A, Lemma B.1-(i), and results for y; and pi5 to easily establish that e—2k2®j, — e—8k3t+2ka ]
This completes the proof of (ii). O

Next, define {e,} to be the standard unit vectors of length N, {E,,,} the elementary N x N matrices,
and introduce the vector
(59) c=(c1(t)e®, . en(t)efv )T,
Lemma C.2. (i) p!, = (cTu,)? where p!, = Ou,/0x for n = 1,2,3.
(i) p,, = 0 as x — —oo forn =1,2,3.

U _8k3 +
(iii) e 2kn® ! — 2k, e Skatt2hnAn g5 3 — 00 forn =1,2,3.

Proof. To prove (i) we begin with the diagonalization D = U~'AU. It follows from the formulas A’ = cc”

and U~! = UT that
(60) D' =—-U WU AU + U TA'U + U AU’
(61) =-UTU'D+U"ec"U + DUTU'.

As D is diagonal the matrix —UTU'D 4+ DUTU’ has zero entries on its main diagonal. This implies that

the diagonal entries of D' and UTce?U must agree, i.e. p!, = (¢u,)?, and proves (i). Part (ii) follows

immediately from (i) since ¢ converges to the zero vector as x — —oo. To prove (iii) we will treat each
eigenvalue separately. For u;, we have that u; — e; as x — oo since e—2k1 A — Ey;. It follows from (i)

that e=2k12 ! = e=2k12 ()2 — 2k e~ 8KTt+2kn A1 T handle g, we apply (i) to A=! to obtain

Yy
(62) (—) = (¢Tuy)?

]
where ¢ is prescribed by Lemma B.1, (iii):
(63) &= (Lerlt)e e, C—Nc]—vl(t)e*’“Nz)T.

C1 CN

It follows from (62) that e—2ksepl = e2ka2(&Tug)? — 2kge Skit+2kA] 45 1 3 oo, Lastly, we differen-
tiate the product formula puspus = det(A) and use results for pj and p} to establish that e 2k22, —
e—8k3t+2k2 A7 Thig proves (iii). O
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