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Pedal Curves

The pedal of a curve ¢ with respect to a point O (origin)
IS the locus of the foot of the perpendicular from O to

the tangent of the curve.

—/

http://mathworld.wolfram.com/PedalCurve.html http://en.wikipedia.org/wiki/Pedal_curve



Formula for Pedal Curves

c(t) = (x(), ¥(2)) e
Tangent vector:  ¢'(¢) = (x'(¢), y'(z)) g

Normal vector:  n(f) = ('), —x'(®))

I OF +D'OF

Let us denote the pedal of ¢ by p.
Then p is given by the formula

p(t) = (c(t)on(2))n(?) 0

:([x(r)y'(r)—x'(r)y(r)]y'(r) [x'(r)y(t)—x(r)y'(r)]x'(r))
COY+OF T OF+DyOr

Inverse Problem (much more difficult): <) & p()
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Curves With Constant Pedal (E236)

Determine a curve ¢ whose pedal has
constant distance a from the origin

p(0)] = —x(1)y'(0) + y(0)x'(z) _ . IR
JIXOF +1 )7 TN

Euler’s Differential Equation:

Y(Ox' ()~ x(0) () = a[x @O)F +[y'()) :

2
y—xﬂza 1+(ﬂj 2
dx dx

d >
y—xp = a1+ p° (p=d—£j



Integrating by Differentiating (Euler)
y—xp=a\/l+7 (p=ﬂ]

dx

Differentiate:

X=|—- ap y:a\/1+p2+xp: ¢




Eliminate the parameter:

2 2
2 2 2
2 2 ap a ap +a 2
xX+y = - + = =da
[ \/l+p2] {\/1+p2J 1+ p°
Solution to Case I:

x4y =4 (c=pisacircle)




Case II: Z—p =0 Thus p = constant = n
X

y—xp=a\l+p® .. y=nx+avl+n® (cisatangent line;

pisapoint)

,I———‘f(




Differential Geometry of Plane Curves

Arc length parameter:

s(t) = L: C'(f)| df  (arc length) yd A T

T(s)=c'(s)  (unittangent vector) \ -
T'(s)
I7'(s))

N(t)= (unit normal vector)

I'LN

K= | T '(S)| (curvature)

Frenet formulas:

T'(s)=xN(s) ©

N'(s) =—«T(s)



Solution by Differential Geometry

Curves with constant pedal

|P(S)| =c(s)eN(s)=a

Differentiate: c'(s)sN(s)+c(s)eN'(s)=0
- 0+c(s)eN'(s)=0 (T L N)
— c(s)e(—xT(s))=0
= kc(s)ec'(s)=0

Casel: kx=0=c(s)isaline

Casell: k #0= c(s)c'(s)=0
= c(s)sc(s) =k (constant)

|c(S)| —Jk=a (circle)
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Pedal Surfaces

The pedal of a surface M with respect to a point O
(origin) is the locus of the foot of the perpendicular
from O to the tangent plane of the surface.

et us denote the pedal of A by P. If M is described by
z = f{x,y), then P is given by the formula

p(x,y)=(zen)n
where n iIs the unit normal vector
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Surfaces With Constant Pedal

Determine a surface M whose pedal has
constant distance k from the origin

We will call a surface M with constant pedal a
tangentially equidistant (TED) surface

—X——y—+2Z
Ox yay

(82)2 0z i
— |+ — | +1
Ox oy
Thus our surface S satisfies

Oz Oz (82)2 oz )
z—x——-y—=a |1+ — | +| —
ox =~ oy Ox oy

|p(x, »)| =k = \/
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Differential Geometry of TED Surfaces

TED surfaces (with constant pedal)
M =X(u,v):DcR* > R’
X(u,v)en(u,v)=k

Differentiate:
X en+Xen =0+Xxen, =0

X, oN+Xen =0+xen =0
Case I: {n_,n_} are linearly independent on M

XeX =0
span{n,,n }=7TM = {x-xu g = XeX =k (circle)

Case Il: {n ,n }are NOT linearly independent on M

Gauss curvature K =0 on M (developable) = M is a ruled surface



Ruled TED Surfaces

X:DcR?> > M cR?

X(u,v) = Bu)+vo(u)

L) - directrix
S(u) - ruling

Cone

Observation: Let M be a ruled surface whose directrix
S is a curve that lies on the sphere S?(k) of radius «.
Then M is a TED surface with constant pedal g if and
only if the tangent planes of A and S?(k) agree on S.

X (u,v)=pL"u)+vd'(u)
X, (u,v)=06(u)
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Lemma: Assume B(u) < S (k) and §(u) € Ty, S* (k).

Then T, \M =T,,,S°(k) if and only if 8'(u),5(u), 5 '(u)

are coplanar.

Theorem: Let M be a ruled surface having a coordinate
patch of the form

X(u,v) = Bu)+vo(u)

where S(u) < S?(k). If B'(u),5(u), o' (u) are coplanar, then
M is a developable ruled TED surface with constant pedal .

Explicit Construction of TED surfaces:
Lemma: If £ is a regular spherical curve and

S(u) = pu)x B'(u) € Ty, S (k).
then 3,0, and o' are coplanar.
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Example 1. (Equator)

S(u) = (cosu,sinu,0)
o(u)=p(u)xp'(u)=(0,0,1)

X(u,v) = f(u) +vo(u) = (cosu,sinu,v)

S

Example 2: (Latitude circle)

—(cosu,sinu,1)

Pu) = \/—
ou)=Lw)x p'(u) = %(—COSu,—Sin u,1)

X(u,v) = Bu) +vS(u) = %((\/E—v) cosu, (v2 =v)sinu,~/2 +v)
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Example 3: (Figure-8)

L(u) = (cosusinu,sin® u,cosu)
S(u) = Bu)x B'(u) = (—%(3+cos 2u)sinu,cos’ u,sin’ u)
X(u,v) = f(u) +vo(u)

= (—%(—2 cosu + v(3+Cos 2u))sinu,

vCOS® u +Sin” u,CoSu + vsSin® u)
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Further Research

- Description of TED surfaces as the union a
region R of the sphere and the developable

ruled surface corresponding to the boundary

Il

of R

- Must every (smooth) TED surface with constant
pedal be either the sphere, a tangent plane, a
developable ruled surface, or a union of a region
of the sphere and a developable rule surface?

- Generalization to n-dimensional TED manifolds
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