Ten
Experimental
Conjectures
1/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th

Project

Ten Experimenta Conjectures

Work in Progress

Mining the OEIS: Ten Experimental Conjectures

Hieu D. Nguyen and Douglas Taggart

Department of Mathematics Department of Computer Science Rowan University

Joint Math Meetings - San Diego, CA

1/9/2013

Online Encyclopedia of Integer Sequences (OEIS)

Ten
Experimental
Conjectures
2/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Project

Ten Experimenta Conjectures

Work in Progress Searchable online database containing information on over 200,000 integer sequences: http://oeis.org

Online Encyclopedia of Integer Sequences (OEIS)

Ten
Experimental
Conjectures
2/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Projec Eureka

Ten Experimenta Conjectures

- Searchable online database containing information on over 200,000 integer sequences: http://oeis.org
- Created by Neil Sloane originally in book form the 1970's

Online Encyclopedia of Integer Sequences (OEIS)

Ten Experimental Conjectures 2/23

Nguven and Douglas Taggart

OEIS

- Searchable online database containing information on over 200,000 integer sequences: http://oeis.org
- Created by Neil Sloane originally in book form the 1970's
- Sample entry A000045: Fibonacci sequence -{0, 1, 1, 2, 3, 5, ..., 39088169}

Ten
Experimental
Conjectures
3/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the

OEIS

Ten Experimenta

Work in Progress GOAL: Discover new mathematical identities involving integer sequences.

Ten Experimental Conjectures 3/23

Nguven and Taggart

Mining the **OEIS**

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:

Ten
Experimental
Conjectures
3/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

OEIS

Eureka

ren Experimenta Conjectures

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:
 - Great bookkeepers: Wallis, Newton, Euler, Gauss, etc.

Ten
Experimental
Conjectures
3/ 23

Hieu D. Nguyen and Douglas Taggart

OEI!

Mining the OEIS

Project

Ten Experimenta Coniectures

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:
 - Great bookkeepers: Wallis, Newton, Euler, Gauss, etc.
 - Use human intuition to infer number patterns

Ten
Experimental
Conjectures
3/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimenta Conjectures

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:
 - Great bookkeepers: Wallis, Newton, Euler, Gauss, etc.
 - Use human intuition to infer number patterns
- Modern (automated or by computer) approach:

Ten Experimental Conjectures 3/23

Nguven and Douglas Taggart

Mining the **OEIS**

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:
 - Great bookkeepers: Wallis, Newton, Euler, Gauss, etc.
 - Use human intuition to infer number patterns
- Modern (automated or by computer) approach:
 - Small-scale: Use OEIS to investigate a single sequence or family of sequences

Ten Experimental Conjectures

Ten
Experimental
Conjectures
3/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

- GOAL: Discover new mathematical identities involving integer sequences.
- Classical (manual or by hand) approach:
 - Great bookkeepers: Wallis, Newton, Euler, Gauss, etc.
 - Use human intuition to infer number patterns
- Modern (automated or by computer) approach:
 - Small-scale: Use OEIS to investigate a single sequence or family of sequences
 - Large-scale (data mining): Mine the entire OEIS database as a whole

Ten
Experimental
Conjectures
4/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

lining th EIS

Project

Eureka

Ten Experimenta Conjectures

Work in Progress Experimental mathematics research project aimed at mining the OEIS for new identities.

Ten Experimental Conjectures 4/23

Nguven and Douglas Taggart

Project Eureka

- Experimental mathematics research project aimed at mining the OEIS for new identities.
- Our approach is to store integer sequences and their transformations in a database and apply an appropriate similarity measure to match sequences numerically.

Ten
Experimental
Conjectures
4/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

lining the EIS

Project Eureka

> Ten Experimenta Conjectures

Work in Progress

- Experimental mathematics research project aimed at mining the OEIS for new identities.
- Our approach is to store integer sequences and their transformations in a database and apply an appropriate similarity measure to match sequences numerically.
- Filter matches (experimental conjectures) to obtain interesting new identities.

Ten Experimental Conjectures

Ten
Experimental
Conjectures
4/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

> Ten Experimental Conjectures

- Experimental mathematics research project aimed at mining the OEIS for new identities.
- Our approach is to store integer sequences and their transformations in a database and apply an appropriate similarity measure to match sequences numerically.
- Filter matches (experimental conjectures) to obtain interesting new identities.

$$\sum_{k=0}^{n} F_k = F_{n+2} - 1 \tag{1}$$

List of Transformations

Ten
Experimental
Conjectures
5/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the

Project Eureka

> Ten Experimenta Conjectures

Symbol (Txx)	Transformation Name	Formula	
T1`	Identity	a _n	
T2	Partial Sums	$\sum_{k=0}^{n} a_k$	
Т3	Partial Sums of Squares	$\sum_{k=0}^{n} a_k^2$	
T4	Inverse Binomial Transform	$\sum_{k=0}^{n} (-1)^{n} \binom{n}{k} a_{k}$	
T5	Self-Convolution	$\sum_{k=0}^{n} a_k a_{n-k}$	
T6	Linear Weighted Partial Sums	$\sum_{k=0}^{n} ka_k$	
T7	Binomial	$\sum_{k=0}^{n} \binom{n}{k} a_k$	
T8	Product of Two Consecutive Elements	$a_k a_{n-k}$	
T9	Cassini	$a_{n-1}a_{n_1}-a_n^2$	
T10	First Stirling	$\sum_{k=0}^{n} s(n,k)a_k$	
T11	Second Stirling	$\sum_{k=0}^{n} S(n,k)a_k$	
T12	Boustrophedon	$\sum_{k=0}^{n} \binom{n}{k} E_{n-k} a_k$	
T13	First Differences	$a_n - a_{n-1}$	
T14	Catalan	$\sum_{k=0}^{n} \frac{k}{n} \binom{2n-k-1}{n-k} a_k$	
T15	Hankel	$\det(a_{i+j})_{i,j=0}^n$	
T16	Sum of Divisors	$\sum_{d n} a_d$	
T17	Moebius	$\sum_{d n} \mu(n/d) a_d$	

Ten
Experimental
Conjectures
6/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

lining th

Project Eureka

> Ten Experimenta Conjectures

Work in Progress Apply T1-T17 to A000001-A170000

Ten Experimental Conjectures 6/23

Nguven and

Project Eureka

- Apply T1-T17 to A000001-A170000
- Over 3 million sequence transformations

Ten Experimental Conjectures

Ten Experimental Conjectures 6/23

Taggart

Project Eureka

- Apply T1-T17 to A000001-A170000
- Over 3 million sequence transformations
- Terms are stored in a MySQL table using a window format

Ten Experimental Conjectures 6/23

Nguven and Taggart

Project Eureka

- Apply T1-T17 to A000001-A170000
- Over 3 million sequence transformations
- Terms are stored in a MySQL table using a window format
- Table contains over 100 millions rows

Table: Sequence Transformations - Sample Entries

ID	Label	Position	EntryOne	EntryTwo	EntryThree
1	A000045S1T1	0	0	1	1
2	A000045S1T1	1	1	1	2
3	A000045S1T1	2	1	2	3
4	A000045S1T1	3	2	3	5
38	A000045S1T1	37	24157817	39088169	Null
39	A000045S1T1	38	39088169	Null	Null

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen an Douglas Taggart

OEIS

Mining th

Project

Eureka

Ten Experimenta Conjectures

Work in Progress ■ Challenges with matching sequences:

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen and Douglas Taggart

UEIS

ining th EIS

Project Eureka

> Ten Experimenta Conjectures

- Challenges with matching sequences:
 - Sequences stored in OEIS vary in length from 4 to 100 terms

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen and Douglas Taggart

OLIS

ining the EIS

Project Eureka

> Ten Experimenta Conjectures

- Challenges with matching sequences:
 - Sequences stored in OEIS vary in length from 4 to 100 terms
 - Many sequences have the same initial terms 0 and 1.

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Aining the DEIS

Project Eureka

> Ten Experimenta Conjectures

- Challenges with matching sequences:
 - Sequences stored in OEIS vary in length from 4 to 100 terms
 - Many sequences have the same initial terms 0 and 1.
 - Sequences may be shifts, translations or scalar multiples (or all three) of one another as illustrated by previous Fibonacci identity.

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

> Ten Experimenta Conjectures

- Challenges with matching sequences:
 - Sequences stored in OEIS vary in length from 4 to 100 terms
 - Many sequences have the same initial terms 0 and 1.
 - Sequences may be shifts, translations or scalar multiples (or all three) of one another as illustrated by previous Fibonacci identity.
- Match sequences using a similarity measure based on head-bites-tail (HBT) overlap $L_{\rm max}$ and relative HBT distance d_r .

Ten
Experimental
Conjectures
7/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

> Ten Experimenta Conjectures

- Challenges with matching sequences:
 - Sequences stored in OEIS vary in length from 4 to 100 terms
 - Many sequences have the same initial terms 0 and 1.
 - Sequences may be shifts, translations or scalar multiples (or all three) of one another as illustrated by previous Fibonacci identity.
- Match sequences using a similarity measure based on head-bites-tail (HBT) overlap L_{\max} and relative HBT distance d_r .
- Match parameters:
 - $L_{\text{max}} > 4$
 - $d_r \le 1/2$

Linear Matches

Ten
Experimental
Conjectures
8/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Project Eureka

> Ten Experimenta Conjectures

Work in Progress

Definition

Two sequences $\{a_n\}$ and $\{b_n\}$ are said to be *linear* if there exists constants s, t, and C such that

$$sa_n + tb_n = C (2)$$

Ten Experimental Conjectures

Linear Matches

Ten
Experimental
Conjectures
8/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

> Ten Experimental Conjectures

Work in Progress

Definition

Two sequences $\{a_n\}$ and $\{b_n\}$ are said to be *linear* if there exists constants s, t, and C such that

$$sa_n + tb_n = C (2)$$

Lemma

Let a_n and b_n be two non-trivial finite sequences with first differences $\Delta a_n = a_{n+1} - a_n$ and $\Delta b_n = b_{n+1} - b_n$, respectively. Moreover, let $A = GCD\{\Delta a_n\}$ and $B = GCD\{\Delta b_n\}$. Then

$$\frac{\Delta a_n}{A} = \frac{\Delta b_n}{B} \tag{3}$$

if and only if a_n and b_n are linear.

Search Run Times

Ten
Experimental
Conjectures
9/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th

Project Eureka

> Len Experimental Conjectures

Nork in Progress

Table: Search Run Times Based on Window Size

Window Size (Number of Terms)	Run Time (Days)		
1	38.96		
2	3.5		
3	2.67		

Table: Search Run Times Based on Computer Model

Computer (Model/Year)	Configuration (Processor/RAM)	Run Time (Days)	
Apple iMac (mid-2011)	2.7 GHz Intel Core i5 quad-core 4 GB RAM	2.67	
Apple Mac Pro (mid-2010)	3.2 GHz Intel Xeon quad-core 32 GB RAM	0.62	

Current Results

Ten
Experimental
Conjectures
10/23

Hieu D. Nguyen an Douglas Taggart

OEIS

Mining th

Project

Eureka

Ten Experimental Conjectures

Work in Progress Over 300,000 linear matches found.

Current Results

Ten
Experimental
Conjectures
10/23

Hieu D. Nguyen and Douglas Taggart

OEIS

lining the EIS

Project Eureka

> Ten Experimenta Conjectures

- Over 300,000 linear matches found.
- Large fraction of matches are either known, redundant or trivial, e.g. $\underline{A000045}$ S1T1 $(F_n) \sim \underline{A000071}$ S1T1 $(F_n 1)$.

Current Results

Ten
Experimental
Conjectures
10/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Aining the

Project Eureka

> Ten Experimental Conjectures

Work in Progress

- Over 300,000 linear matches found.
- Large fraction of matches are either known, redundant or trivial, e.g. $\underline{A000045}$ S1T1 $(F_n) \sim \underline{A000071}$ S1T1 $(F_n 1)$.
- Matches are stored in a MySQL table, publicly available at Eureka database website: http://elvis.rowan.edu/datamining/eureka

Table: Sample linear match: $\underline{A000045}S1T1 \sim \underline{A000045}S1T2$

ID	Label1	Label2	Overlap	Distance	Scaling	Translation	Shift
2087	A000045S1T1	A000045S1T2	34	0.02857	1	1	-2

$$\sum_{k=0}^{n} F_k = F_{n+2} - 1$$

Ten Experimental Conjectures

Ten
Experimental
Conjectures
11/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Projec Eureka

Ten Experimental Conjectures

Work in Progress Present a sample of ten experimental conjectures (linear matches) that we believe to be new, interesting, and not mentioned on OEIS website.

Ten Experimental Conjectures

Ten
Experimental
Conjectures
11/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Project Eureka

Ten Experimental Conjectures

- Present a sample of ten experimental conjectures (linear matches) that we believe to be new, interesting, and not mentioned on OEIS website.
- Many conjectures are suitable for advanced undergraduate math students to investigate and hopefully develop into research projects.

Ten Experimental Conjectures

Ten
Experimental
Conjectures
11/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

- Present a sample of ten experimental conjectures (linear matches) that we believe to be new, interesting, and not mentioned on OEIS website.
- Many conjectures are suitable for advanced undergraduate math students to investigate and hopefully develop into research projects.
- All conjectures can be accessed on the Eureka database website using its search engine.

Conjecture 1

Ten
Experimental
Conjectures
12/ 23

Hieu D. Nguyen and Douglas Taggart

OEI

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress

<u>A002212</u>S1T15 \sim <u>A032908</u>S1T1 ($L_{\text{max}} = 10$, $d_r = 0.43$)

$$\det[(a_{i+j})_{i,j=0}^n] = b_{n+1} - 1 \tag{4}$$

where

- **a** $a_n = \underline{A002212}$ Number of restricted hexagonal polyominoes with n cells.
- $b_n = \underline{A032908}$ One of 4 3rd-order recurring sequences for which the first derived sequence and the Galois transformed sequence coincide.

Ten
Experimental
Conjectures
13/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A004441</u>S1T12 \sim <u>A065619</u>S1T7 ($L_{\text{max}} = 21$, $d_r = 0.45$)

$$\sum_{k=0}^{n} \binom{n}{k} E_{n-k} a_k = \sum_{k=0}^{n} \binom{n}{k} b_k \tag{5}$$

- **a** $a_n = \underline{A004441}$ Numbers that are not the sum of 4 distinct nonzero squares.
- $b_n = \underline{A065619}$ E.g.f. $x(\tan(x) + \sec(x))$.

Ten
Experimental
Conjectures
14/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A008410</u>S1T17 \sim <u>A022523</u>S1T2 ($L_{\text{max}} = 16$, $d_r = 0.16$)

$$\sum_{d|n} \mu(n/d) a_d = 480 \sum_{k=0}^{n-1} b_k$$
 (6)

- $a_n = \underline{A008410}$ a(0) = 1, $a(n) = 480\sigma_7(n)$, where $\sigma_7(n)$ is the sum of divisors function.
- $b_n = A022523$ Nexus numbers $(n+1)^7 n^7$.

Ten
Experimental
Conjectures
15/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A026375</u>S1T5 \sim <u>A144180</u>S1T10 ($L_{\text{max}} = 17$, $d_r = 0.11$)

$$\sum_{k=0}^{n} a_k a_{n-k} = \frac{5}{4} \sum_{k=0}^{n} s(n,k) b_k - \frac{1}{4}$$
 (7)

- $a_n = \underline{A026375} a(n) = \sum_{k=0}^n \binom{n}{k} \binom{2k}{k}.$
- $b_n = \underline{\text{A144180}}$ Number of ways of placing n labeled balls into n unlabeled (but 5-colored) boxes.

Ten
Experimental
Conjectures
16/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A037164</u>S1T17 \sim <u>A022527</u>S1T2 ($L_{\text{max}} = 11$, $d_r = 0.19$)

$$\sum_{d|n} \mu(n/d) a_d = \sum_{k=0}^{n-1} b_k$$
 (8)

- $a_n = \underline{A037164}$ Numerators of coefficients of Eisenstein series $E_12(q)$ (or $E_6(q)$ or $E_24(q)$).
- $b_n = \underline{A022527}$ Nexus numbers $(n+1)^{11} n^{11}$.

Ten
Experimental
Conjectures
17/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A046055</u>S1T3 \sim <u>A018903</u>S1T9 ($L_{\text{max}} = 16$, $d_r = 0.35$)

$$\sum_{k=0}^{n-1} a_k^2 = \frac{b_{n-1}b_{n+1} - b_n^2 - 13}{3} \tag{9}$$

- $a_n = \underline{A046055}$ Orders of finite Abelian groups having the incrementally largest numbers of nonisomorphic forms (A046054).
- $b_n = \underline{\text{A018903}}$ Define the sequence $S(a_0, a_1)$ by a_{n+2} is the least integer such that $a_{n+2}/a_{n+1} > a_{n+1}/a_n$ for n >= 0. This is S(1,5).

Ten Experimental Conjectures 18/23

Nguven and Douglas Taggart

Ten Experimental Conjectures

A098411S1T15 \sim **A139685S1T8** ($L_{\text{max}} = 8$, $d_r = 0.16$)

$$\det[(a_{i+j})_{i,j=0}^n] = \frac{1}{2}b_n b_{n+1}$$
 (10)

- $a_n = A098411 Expansion of <math>1/(\sqrt{1-4x} \cdot \sqrt{1-12x})$.
- $b_n = A139685$ Number of $n \times n$ symmetric binary matrices with no row sum greater than 9.

Ten Experimental Conjectures 19/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A122162</u>S1T17 \sim <u>A008384</u>S1T2 ($L_{\text{max}} = 26$, $d_r = 0.05$)

$$\sum_{d|n} \mu(n/d) a_d = \sum_{k=0}^{n-1} b_k$$
 (11)

- **a** $a_n = \underline{A122162}$ Coefficient of q-series for constant term of Tate curve.
- $b_n = \underline{A008384}$ Crystal ball sequence for A_4 lattice.

Ten
Experimental
Conjectures
20/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress <u>A169344</u>S1T7 \sim <u>A152262</u>S1T9 ($L_{\text{max}} = 13$, $d_r = 0.07$)

$$\sum_{k=0}^{n} \binom{n}{k} a_k = \frac{43}{252} (b_{n-1}b_{n+1} - b_n^2) - \frac{1}{42}$$
 (12)

- $a_n = A169344$ Number of reduced words of length n in Coxeter group on 43 generators S_i with relations $(S_i)^2 = (S_iS_i)^{30} = I$.
- $b_n = \underline{A152262} a(n) = 14 * a(n-1) 43 * a(n-2),$ n > 1; a(0) = 1, a(1) = 7.

Ten
Experimental
Conjectures
21/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Project Eureka

Ten Experimental Conjectures

Work in Progress

$$a_n = \sum_{k=0}^{\infty} a(k)b(n-25k) \tag{13}$$

- $a_n = \underline{A000009} = \{1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122, 142, 165, 192, ..., 5718\}$ Expansion of $\prod_{m=1}^{\infty} (1 + x^m)$; number of partitions of n into distinct parts; number of partitions of n into odd parts.
- $b_n = \underline{A034320} = \{1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122, 141, 164, 191, ..., 6082\}$ McKay-Thompson series of class 50a for the Monster group with a(0) = 1.
- $c_n = \underline{\text{A058703}} = \{1, 0, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122\}$ McKay-Thompson series of class 50a for Monster.

Ten
Experimental
Conjectures
22/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th

Project

Ten Experiment

Work in Progress

Python implementation (open-source)

Ten
Experimental
Conjectures
22/23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th

Project Eureka

> Ten Experimenta Coniectures

Work in Progress

- Python implementation (open-source)
- Develop better algorithms to filter interesting matches

Ten
Experimental
Conjectures
22/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining th OEIS

Projec Fureka

Ten Experimenta Coniectures

Work in Progress

- Python implementation (open-source)
- Develop better algorithms to filter interesting matches
- Mine remaining set of integer sequences in OEIS (A170001-A200000)

Ten
Experimental
Conjectures
22/ 23

Hieu D. Nguyen and Douglas Taggart

OEIS

Mining the OEIS

Project Fureka

Ten Experimenta Coniectures

Work in Progress

- Python implementation (open-source)
- Develop better algorithms to filter interesting matches
- Mine remaining set of integer sequences in OEIS (A170001-A200000)
- Mine fractional sequences, e.g. Bernoulli numbers

References

Ten
Experimental
Conjectures
23/23

Hieu D. Nguyen and Douglas Taggart

UEIS

Mining th O<mark>EIS</mark>

Projec

Ten Experimenta Coniectures

Work in Progress

Eureka website: elvis.rowan.edu/datamining/eureka.

Mining the Online Encyclopedia of Integer Sequences (preprint), available at: www.rowan.edu/colleges/csm/departments/math/facultystaff/nguyen

