
I. Introduction

The prevalence of mobile phones, the internet-of-things
technology, and networks of sensors has led to an
enormous and ever increasing amount of data that are
now more commonly available in a streaming fashion

[1]–[5]. Often, it is assumed – either implicitly or explicitly –
that the process generating such a stream of data is stationary,
that is, the data are drawn from a fixed, albeit unknown proba-
bility distribution. In many real-world scenarios, however, such
an assumption is simply not true, and the underlying process
generating the data stream is characterized by an intrinsic non-
stationary (or evolving or drifting) phenomenon. The nonsta-
tionarity can be due, for example, to seasonality or periodicity
effects, changes in the users’ habits or preferences, hardware or
software faults affecting a cyber-physical system, thermal drifts
or aging effects in sensors. In such nonstationary environments,
where the probabilistic properties of the data change over time,
a non-adaptive model trained under the false stationarity
assumption is bound to become obsolete in time, and perform
sub-optimally at best, or fail catastrophically at worst.

Given the increasingly common applications that are driven
by “nonstationary” or “drifting” data generation processes, the
need for effective and efficient algorithms for learning from
(and adapting to) evolving or drifting environments can hardly
be overstated. Such a need has recently provided a welcome
boost to research in learning in nonstationary environments. A
comprehensive review of these recent advances is the primary
focus of this paper. This survey article serves both as a supple-
mentary as well as a complementary effort to the very short list
of other review articles available on concept drift, e.g., [6], [7].
Specifically, we describe the problem of learning in nonstation-
ary environments from two core perspectives: active versus pas-
sive approaches to learning in nonstationary environments. Fur-
thermore, we also cover more recent efforts in the areas of
learning from initially labeled nonstationary environments, and
learning in nonstationary environments that provide imbal-
anced data, not previously reviewed elsewhere.

To set the stage, let us start with three real-world examples
of applications driven by a nonstationary process:

❏❏ Environmental monitoring and forecasting involves a network of
sensors that collects data from a physical phenomenon and

Digital Object Identifier 10.1109/MCI.2015.2471196
Date of publication: 13 October 2015

Gregory Ditzler
Department of Electrical & Computer Engineering
at the University of Arizona, Tucson, AZ, USA
e-mail: ditzler@email.arizona.edu

Manuel Roveri and Cesare Alippi
Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo Da Vinci, 32,
20133 Milano, Italy
e-mails: manuel.roveri@polimi.it, cesare.alippi@polimi.it

Robi Polikar
Department of Electrical & Computer Engineering
at Rowan University, Glassboro, NJ, USA
e-mail: polikar@rowan.edu

Learning in Nonstationary
Environments: A Survey

12 IEEE Computational intelligence magazine | November 2015� 1556-603x/15©2015ieee

transmits them to a control location for fur-
ther processing. In most real-world settings,
sensing units typically suffer from inevitable
aging effects, or faults in their embedded
electronics/sensors. In addition, the physical
phenomena under monitoring can also
evolve with time, e.g., due to seasonality or
climate changes. In such settings, the sta-
tionarity assumption is simply incorrect.

❏❏ Recommendation systems provide users with
products or services in which they are likely
to have an interest, based on their purchas-
ing or browsing history. User interests in
products and services can, of course, change
due to a variety of reasons such as personal
needs, current trends, employment status
and age, among others [8], [9]. Building a
model for a user and expecting it to be reli-
able in the distant future is therefore unreal-
istic. Hence, recommendation systems
operate in nonstationary environments, and
therefore the model that is providing the
recommendations must be able to adapt to
the users’ changing interests.

❏❏ Predicting energy demand is one of the most
important tasks for the effective opera-
tion of the power grid. Historical data are
generally available to construct predictive
models, but making energy demand pre-
dictions is a nonstationary problem due im

a
g

e
 l

ic
e

n
s

e
d

 b
y

 C
R

EA
T

AS

Abstract—Applications that generate data from
nonstationary environments, where the underlying

phenomena change over time, are becoming increasingly
prevalent. Examples of these applications include making

inferences or predictions based on financial data, energy demand
and climate data analysis, web usage or sensor network monitoring, and

malware/spam detection, among many others. In nonstationary environ-
ments, particularly those that generate streaming or multi-domain data, the prob-

ability density function of the data-generating process may change (drift) over time.
Therefore, the fundamental and rather naïve assumption made by most computational

intelligence approaches – that the training and testing data are sampled from the same fixed,
albeit unknown, probability distribution – is simply not true. Learning in nonstationary

environments requires adaptive or evolving approaches that can monitor and track the
underlying changes, and adapt a model to accommodate those changes accordingly.

In this effort, we provide a comprehensive survey and tutorial of established as
well as state-of-the-art approaches, while highlighting two primary per-

spectives, active and passive, for learning in nonstationary environ-
ments. Finally, we also provide an inventory of existing real and

synthetic datasets, as well as tools and software for getting
started, evaluating and comparing different approaches.

November 2015 | IEEE Computational intelligence magazine 13

14 IEEE Computational intelligence magazine | November 2015

to a variety of factors that affect supply and demand, such as
climate fluctuations that change throughout the year. Ener-
gy-demand prediction algorithms must also be able to deal
with long-term gradual changes due to, for example, increas-
ing populations, improvements in the efficiency of the ener-
gy production, as well as increasingly ubiquitous new
disruptive technologies such as electric vehicles and solar
powered homes that can return access energy to the grid.
As these examples illustrate, the problem of learning in non-

stationary environments – also referred to as learning in
dynamic, evolving or uncertain environments, or more com-
monly as learning “concept drift” – requires novel and effective
approaches that can track and adapt to changes in the data gen-
erating process.

Against this background, our aim in this paper is twofold.
First, we formalize the process of learning in nonstationary
environments for classification tasks, and present the broad
spectrum of scenarios that can be categorized under the non-
stationary environment framework. Second, we describe the
two primary families of strategies commonly used for learning
concept drift. These two families are generally referred to as
active and passive approaches, terms that are first coined in [10].
They differ in the adaptation mechanism employed to cope
with the change: active approaches rely on an explicit detection
of the change in the data distribution to activate an adaptation
mechanism, while passive approaches continuously update the
model over time (without requiring an explicit detection of
the change). We present and review commonly cited algo-
rithms from both strategies. Finally, we describe the open prob-
lems for current and future research for learning in nonstation-
ary environments, and provide pointers to several
freely-available software tools and benchmark datasets to serve
as references in hopes of stimulating future research.

II. Learning in Nonstationary
Environments as a Framework

A. The Data Generating Process
Let P be the data generating process providing a sequence of
tuples (,)x yt t sampled from an unknown probability distribu-
tion (,),xp yt and let xp yt ^ h and ()xpt be posterior and evi-
dence distributions, respectively, at some arbitrary time .t The
distributions are deliberately subscripted with time t to
explicitly emphasize their time-varying nature. In particular,
x Rt

d! represents a feature vector modeled as a random vari-
able, and yt ! K is a discrete class label, both at time .t The
data may arrive in an online manner, i.e., one single instance at
a time, or in a batch setting. In a single instance setting, only
the tuple ,x yS t t t= ^ h" , is provided to the learning algorithm,
whereas a batch setting provides a finite set of tuples

, , , , .x xy yS t t t t
N

t
N1 1 f= ^ ^h h" , Obviously, when N 1= the

learning problem would be reduced to a single instance set-
ting. Specific terminology is often used to indicate the cause
or nature of changes in the data. In terms of “what” is chang-
ing [6], we have:

❏❏ Real Drift: the posterior probability xp yt ^ h varies over
time, independently from variations in the evidence ;xpt ^ h

❏❏ Virtual Drift: the evidence or the marginal distribution of
the data, ,xpt ^ h changes without affecting the posterior
probability of classes .xp yt ^ h
The change in probability distributions can be further bro-

ken down with respect to the rate at which the drift is taking
place. For example, the concept drift can be abrupt, resulting in
a sudden drift, e.g., drift induced by faults affecting a sensor.
Such cases are also referred to as “abrupt concept drift” or
“concept change.” The concept drift can also be gradual [11],
[12], which is defined as slowly evolving distributions over
time, e.g., as induced by thermal drifts or aging effects in a sen-
sor. Such cases are referred to as “gradual concept drift.”

The drifts, whether abrupt or gradual, can be further clas-
sified as:

❏❏ Permanent: the effect of the variation is not limited in time, or
❏❏ Transient: after a certain amount of time, the effect of the
drift disappears.
The types of drifts in the data stream can be further charac-

terized as cyclical or recurrent variations, the latter of which is
also known as recurrent concepts. In such settings, the ability to
retrieve previously acquired knowledge from similar concepts is
a valuable and desired quality sought in adaptive algorithms.

B. Algorithmic Considerations for Learning
in Nonstationary Environments
There are several important considerations in designing an
algorithm for learning and making predictions in nonstationary
environments. First, recall that the process P generates a
sequence of data S t for , , ,t 1 2 f= assumed to be sampled
from potentially different probability distributions. If data are
sampled from a potentially infinite (or very long) length
sequence, then it is unrealistic to expect that all acquired data
can always be available, a consideration that is especially acute
with big data applications [13]. A more realistic assumption,
which also defines incremental learning, is therefore to accept
that S t is only available for learning or evaluation at the time
first presented to the algorithm [14]–[18], which is also charac-
terized as one-pass learning.

Second, most concept drift algorithms expect that the pre-
dictions made by the classifier will be verified with the labels for
S t arriving along with the next training dataset .S t 1+ This set-
ting allows the algorithm to measure a loss at each time step and
is referred to as the test-then-train scenario [19], [20], where an
evaluation of the previous dataset is conducted prior to training
with the next dataset. If the labels do not become available
immediately as the next batch of data arrives, this scenario is
called “verification latency,” the extreme case of which – labels
never becoming available beyond the initialization step – leads
to “initially labeled environments” as discussed in Section III-C.

Finally, concept drift can also be simply perceived, rather
than actual, caused by insufficient, unknown or unobservable
attributes, a phenomenon known as “hidden context” [21], or
unknown unknown. In hidden context, there is a static

November 2015 | IEEE Computational intelligence magazine 15

underlying process, which is hidden from the learner’s view.
Having the benefit of the hidden context would remove the
nonstationarity. Since the hidden context can never be known,
the learner must rely on the aforementioned probabilistic defi-
nition of concept drift to describe nonstationary environments.

All these aspects should be taken into account in designing
algorithms for learning in nonstationary environments.

C. Related Problems Under the
Nonstationary Learning Framework
Learning in nonstationary environments can be seen as a frame-
work, under which several machine learning concepts and prob-
lem domains can be listed, as depicted in the mindmap of Fig-
ure 1. First, there is the choice of a learning modality, such as
supervised, unsupervised, or semi-supervised [22], [23], and the
rate at which data arrive (e.g., incremental [14], [24], [25], or in
an online manner [26]). Each of these learning modalities would
traditionally assume that the data for both training and testing are

sampled from a fixed unknown probability distribution. Concept
drift detection mechanisms represent effective solution to detect
the occurrence of changes within incremental and online learn-
ing algorithms (please refer to Section III-A for an analysis of
available concept drift detection mechanisms). These different
learning modalities by themselves do not necessarily describe a
formal nonstationary environment; they are, however, still at the
core of learning in a nonstationary setting.

The fields of covariate shift, domain adaption and transfer
learning are all characterized by some shift from the training to
testing probability distributions, but only for one set of consecu-
tive time instances, rather than a streaming setting. For example,
covariate shift describes a perceived change in sampled data dis-
tributions between training (source) and test (target) data, with-
out an actual change in the true labeling function, and hence
assumes that ,x xp y p yt t 1= +^ ^h h with, ,x xp pt t 1! +^ ^h h
where pt and pt 1+ denote probability distributions on the
source and target [27]–[30].

Learning in
Nonstationary
Environments

Learning
Modalities

Online
Learning

Incremental
Learning

Supervised
vs.

Unsupervised

Drift
Detection

Model
Adaptation

Passive
Approach

Active
Approach

Knowledge
Shifts

Transfer
LearningDomain

Adaptation

Covariate
Shift

Applications

Sensor
Networks

Spam
Prediction

Electrical
Load

Forecasting

Big Data Time-Series &
Data Stream

Figure 1 Mindmap of concept drift describing the connections the field has with different areas within machine learning and applications
where concept drift can be found.

16 IEEE Computational intelligence magazine | November 2015

Transfer learning addresses the issue that training and future
data must be in the same feature space, and have the same dis-
tribution [31]. In domain adaptation, training and test data are
sampled from different but related domains (e.g., in a movie
recommendation system, given training data sampled from
romantic comedies, the problem is to predict the user interest
on test data sampled from dramas) [32]–[34]. These problem
domains are subsets of the nonstationary learning problem, as
the data distribution changes from training data to test data.
However, unlike streaming data examples, there is no notion of
continuing time. The source (training) and target (test) data can
be interpreted as obtained at time instances t 1= and ,t 2=
respectively, with no future data.

The most general form of a nonstationary environment
typically involves streaming or continuously arriving data from
time-series applications [35], such as tweet classification [36], or
genomics [37], [38], etc. Big Data applications, which may or
may not be associated with a streaming time-series data, also
constitute one of the major application domains of learning in
nonstationary environments. It is important to note that time-
series analysis of data does not imply that the learning process is
nonstationary.

III. Learning in Nonstationary Environments:
Active and Passive Approaches
Adaptation algorithms for learning in the presence of concept
drift are primarily based on either an active or passive approach
[10], [39]. Algorithms following the active approach specifically

aim at detecting concept drift, while algorithms following the
passive one continuously update the model every time new data
are presented, regardless whether drift is present. Both active and
passive approaches intend to provide an up-to-date model; how-
ever, the mechanisms used by each to do so are different.

We emphasize that both active and passive approaches can be
successful in practice; however, the reason for choosing one
approach over the other is typically specific to the application. In
fact, before choosing a specific algorithm for learning in a non-
stationary environment, it is important to consider the dynamics
of the learning scenario (e.g., drift rates, whether the data arrive
online or in batches, etc.), computational resources available (e.g.,
embedded systems or high-performance computers), and any
assumptions that can be made about the distributions of the data.
In general, passive approaches have been shown to be quite
effective in prediction settings with gradual drifts and recurring
concepts [10]. While coping with gradual drift can be achieved
with active approaches (e.g., see [40]), the change detection with
gradual drift is nevertheless more difficult. Active approaches
work quite well in settings where the drift is abrupt. In addition,
passive approaches are generally better suited for batch learning,
whereas active approaches have been shown to work well in
online settings as well (e.g., [41]–[43]).

In the following section, we discuss active and passive
approaches, and highlight popular implementations of these
approaches. A more formal and comprehensive treatment of
learning in nonstationary environments can be found in [11].

A. Active Approaches: Change
Detection & Adaptation
As shown in Figure 2, the active approach for
learning in presence of concept drift is based
on a change detection mechanism that trig-
gers, whenever advisable, an adaptation mech-
anism aiming at reacting to the detected
change by updating or building a new classi-
fier. The change detector aims at asserting
“there is a change in the process P” [44] by
inspecting features extracted from the data-
generating process for change detection pur-
poses and/or analysis of the classification error
(evaluated over labeled samples): the analysis
of the extracted features monitors the station-
arity of the estimated ,xpt ^ h whereas the
analysis of the classification error aims at
detecting variations in the estimated .xp yt ^ h
The adaptation phase, which updates or
rebuilds the classification model, is activated
only when a change is detected. Adaptive
strategies following this mechanism are also
known as “detect & react” approaches [11]:
once a change is detected, the classifier dis-
cards the obsolete knowledge, and adapts to
the new environment. Popular change detec-
tion mechanisms are reviewed below.

Data
Generating

Process

Datastreams

Feature Extraction

Features for
Classification

Features for
Change Detection

Detected
ChangeClassification

Error-

+

Change Detector

Classifier

Adaptation

Update/
Rebuild

Output of
the Classifier

Figure 2 Active approach for learning a classifier in nonstationary environments. The fea-
ture extraction aims at extracting features from the data-generating process both for
change detection and classification. The change detector inspects features extracted for
change detection purposes and/or the classification error evaluated over labeled samples.
Once a change has been detected, the adaptation phase is activated to update or rebuild
the classifier. The black, blue and red dashed lines refer to the classification, the change
detection and the adaptation phase, respectively.

November 2015 | IEEE Computational intelligence magazine 17

1) Change Detection: Change detection mechanisms rarely
operate directly on the raw data [45]–[47]. Rather, change
detection is typically carried out by inspecting independent
and identically distributed (i.i.d.) features extracted from the
incoming data stream, e.g., the sample mean, the sample vari-
ance [42], [43], [48]–[52], and/or the classification error [41],
[43], [52]–[56].

Most existing approaches to detect changes in data generat-
ing processes can be grouped into four main families: Hypothe-
sis Tests, Change-Point Methods, Sequential Hypothesis Tests, and
Change Detection Tests. These families of change detection
mechanisms share the ability to inspect variations through the-
oretically-grounded statistical techniques, but differ in the way
data are processed.

The aim of Hypothesis Tests (HTs) is to assess the validity of a
hypothesis according to a predetermined confidence (e.g., a set
of samples has been drawn from a distribution with a specific
mean value, two sets of samples have been drawn from two dis-
tributions with the same mean value, or two sets of samples
have been drawn from the same distribution). These statistical
techniques operate on fixed-length sequences (no sequential
analysis), and can control the false positive rate in change detec-
tion. Examples of HTs applied to the concept drift scenarios
can be found in [47], [57]. In particular, the use of the normal-
ized Kolmogorov-Smirnov distance measuring the differences
between cumulative density functions estimated on training
samples and a window of recent data is suggested in [47]. A
change detection mechanism based on the statistical test of
equal proportions to inspect variations in the classification error
is proposed in [57].

Similarly to HTs, Change-Point Methods (CPMs) operate on a
fixed data sequence. These statistical techniques [58] aim at veri-
fying whether the sequence contains a change-point (i.e., the
time instant the data-generating process changes its statistical
behavior) or not by analyzing all possible partitions of the data
sequence. The main characteristic of this family of statistical
techniques is the ability to jointly address the problems of
detecting the presence of a change, and estimating the time
instant where the change occurred. The main drawback of such
techniques is the high computational complexity that is
required to analyze all the partitions of the data sequence, which
makes their use in a streaming scenario costly. Approximate for-
mulations of CPMs, meant to work in an online manner, have
been recently presented in the literature (e.g., [59]), but the
complexity of these solutions remains a significant concern.

Differently from HTs and CPMs that operate on fixed data
sequences, Sequential Hypothesis Tests (SHTs) are able to sequen-
tially inspect incoming samples (one at the time) up to when a
decision to accept or refuse the no-change hypothesis can be
taken. In other words, these statistical techniques analyze the
stream of data until they have enough statistical confidence to
decide either that a “change” or “no change” has occurred.
Samples acquired after the decision are not considered. Exam-
ples of SHTs are the sequential probability ratio test [60] and
the repeated significance test [61]. The main drawback of SHTs

resides in the need to make a decision about the null hypothe-
sis (i.e., either change or no-change) once they gain enough
statistical confidence. In fact, after the decision, the SHTs stop
analyzing the datastreams (once the decision is made by the
SHT, there is no need to analyze additional data) and this is a
strong limitation in a sequential analysis where the goal is to
keep on operating up to when a concept drift affected the data
generating process.

The need to operate in a fully sequential manner is
addressed by Change Detection Tests (CDTs), which are specifi-
cally designed to sequentially analyze the statistical behavior of
streams of data/features. These methods are usually character-
ized by a reduced computational complexity (since they have
to continuously monitor the data streams), but cannot guaran-
tee a control of the false positive rates (as HTs, CPMs and
SHTs do).

The simplest CDT is based on a threshold: a change is
detected whenever a feature value or the classification error
exceeds the threshold. For example, a fixed threshold based on
the Hoeffding bound applied to the difference between sample
means of two non-overlapping data windows is suggested in
[42], [48]. A different solution is proposed in [54], where the
detection of the change is triggered by comparing the valida-
tion error computed on the latest data window with the vali-
dation error coming from a window of data randomly sampled
from previously acquired data.

Another thresholding mechanism based on the classification
error is proposed in [53], where the threshold is a function of
the variance of the difference between the training and valida-
tion error rates. A thresholding mechanism, based on the analy-
sis of the Bernoulli Exponential Weighted Moving Average
(EWMA) of errors can be introduced by the last-added classi-
fier as suggested in [55], where the threshold is a function of
the proportion of errors of the last-added classifier and a user-
defined sensitivity parameter. The mechanism suggested in [41]
detects a change when the classification error overcomes a
threshold function of the standard deviation of the associated
Bernoulli distribution. This mechanism has been extended in
[56] by relying on the analysis of the distance between two
classification errors (i.e., the current and the lowest value)
instead of the proportion of errors. The distance based compar-
ison allows the suggested mechanism to improve the detection
performance in cases of slow concept drift. A concept change
detection mechanism aiming at assessing variations in the
expectation of the classification error between a reference and a
sliding detection window is suggested in [62], where the
threshold is based on Bernstein bounds. A more effective
detection threshold paired with a random sampling mechanism
to store samples in the detection window has been presented in
[63]. Similarly, a two-moving average mechanisms where the
detection thresholds are based on Hoeffding’s Bounds is sug-
gested in [64].

The use of the Hellinger distance to measure the distribu-
tion divergence between the current data distribution esti-
mated on batches of data and a reference one is suggested in

18 IEEE Computational intelligence magazine | November 2015

[46] with the adaptive threshold based on the t-statistics. In line
with [46], a family of distance measures between distributions
(based on the comparison between windows of data) and a
threshold-based algorithm to inspect variations in both discrete
and continuous distributions is proposed in [45].

While thresholding mechanisms are quite straightforward to
design and implement, their main drawback is the difficulty to
set the threshold at design time (without assuming any a priori
information about the possible changes): too low values may
induce many false positive detections, while false negative ones
may occur in cases of too large thresholds.

A different approach is suggested in [49], where an adaptive
CDT based on the CUmulative SUM (CUSUM) test [44] for
monitoring the stationarity of sample mean of the data over
time is presented. Here, the log-likelihood ratio between two
automatically estimated pdfs (i.e., the null and an alternative
pdf) is sequentially evaluated over time to inspect changes in
the data-generating process. A computational intelligence
extension of the adaptive CUSUM test to inspect variations in
sample statistical moment features as well as internal core vari-
ables coming from other statistical tests is presented in [50]. The
Intersection of Confidence Intervals (ICI) CDT and its vari-
ants have been presented in [43], [51], [52], [65]. These CDTs
are particularly effective when features are generated by a
Gaussian distribution with a fixed variance. ICI CDTs come
with a refinement procedure that provides an estimate of the
time instant the change occurred (once detected). This ability is
crucial for the adaptation phase of Just-in-Time Adaptive Clas-
sifiers described in the next subsection.

Interestingly, HTs can be jointly used with CDTs to vali-
date a change detected in a data stream. Change detection
mechanisms following this approach are generally referred to as
hierarchical CDTs, and are typically able to provide a reduction
in false positive detections without increasing the change
detection delay [66]. CPMs can also be jointly considered with
CDTs within a hierarchical approach. For example, the joint
use of the change detection layer based on the ICI CDT and a
validation layer based on CPM is suggested in [67].

2) Adaptation: Once a change has been detected, the classi-
fier needs to adapt to the change by learning from the newly
available information, and discarding the obsolete one. The dif-
ficulty consists in designing adaptive mechanisms able to effec-
tively distinguish between obsolete and up-to-date samples.
The adaptation mechanisms for active classifiers can be
grouped into three main families: windowing, weighting and
random sampling.

Windowing is the most common and eas-
iest mechanism. Once a change is detected, a
sliding window over the last acquired samples
includes only the up-to-date training set for
the learner, while previous samples that have
fallen out of the window are considered
obsolete. Then, all samples within the current
window are used to re-train the classifier (or
the CDT when needed), whereas older ones

are simply discarded. The choice of the appropriate window
length is a critical issue and can be determined based on the
expected change ratio as suggested in [39], or be adaptive as
proposed in [41]–[43], [48], [52], [53], [65]. An adaptive length
windowing mechanism based on the analysis of the mean val-
ues of subwindows opened on the latest samples is proposed in
[42]: the window widens in stationary conditions and shrinks
when a change is detected. A detection mechanism based on
separate warning and detection thresholds applied to the classi-
fication error is suggested in [41], where the length of the win-
dow is modified to collect all samples acquired between the
instant a feature overcomes the warning threshold and the time
instant the detection threshold is exceeded.

A new generation of adaptive classifiers, called Just-In-Time
(JIT) adaptive classifiers, able to operate in nonstationary envi-
ronments is proposed in [43], [52], [65]. These algorithms rely
on an adaptive window whose length is estimated through the
ICI-based refinement procedure. These algorithms suggested
the use of two CDTs to jointly monitor the distributions of
the input data and the classification error. In addition, these JIT
adaptive classifiers are able to integrate supervised information
coming from the data-generating process over time to improve
the classification accuracy in stationary conditions. More
recently, a JIT adaptive classifier specifically designed to operate
with gradual concept drifts has been proposed in [68]. There, a
CDT aims at detecting variations in the polynomial trend of
the expectation of the data generating process. Once a change
has been detected, an adaptive length windowing mechanism
based an estimate of the drift dynamics is used to modify the
window length.

A pseudocode of the JIT adaptive classifier family is given
in Figure 3. An initial training sequence ST0 is used to config-
ure both the classifier and the ICI-based CDT (line 1). After
the training phase, when a new sample x i arrives (with super-
vised information yi whenever available), the CDT monitors
the stationarity of P   (line 5). If a change is detected at time ,T
an estimate Tt of the time instance the change occurred is pro-
vided by the ICI-based refinement procedure (line 7). All sam-
ples acquired before Tt are considered to belong to the previ-
ous state of the process and, thus, are discarded. The samples
acquired between Tt and ,T representing the up-to-date data
of the adaptive window, are coherent with the new status, and
are used to retrain both the classifier and the CDT (line 8). In
stationary conditions, the supervised information ,x yi i^ h is
integrated into the classifier to improve (whenever possible) its
classification accuracy (line 11).

[In many applications] the fundamental and rather
naïve assumption made by most computational
intelligence approaches – that the training and
testing data are sampled from the same fixed, albeit
unknown, probability distribution – is simply not true.

November 2015 | IEEE Computational intelligence magazine 19

A hybrid fixed-adaptive approach where the learner is ini-
tially trained on a fixed length data window, followed by an
adaptation mechanism modifying the window length is sug-
gested in [53].

Differently from windowing approaches, which select a
subset of samples from the data stream, weighting mechanisms
consider all available samples but, suitably weighted, e.g.,
according to their age or relevancy with respect to the classi-
fication accuracy of the last batch(es) of supervised data [40],
[69]–[71]. A gradual-forgetting weighting mechanism is sug-
gested in [69], where the weights of the samples linearly
decrease with time (recent samples have larger weights than
older ones). Similarly, a time-based weighting mechanism is
presented in [70]. There, a set of decay functions for the
weights (ranging from polynomial to exponential) is pre-
sented and compared. A different approach is presented in
[40], where weights depend on a change index measuring the
variation of the data-generating process over time (w.r.t. a ref-
erence training set). As suggested in [71], samples can also be
weighted according to the classification accuracy/error com-
puted on the last batch of supervised data. The main draw-
back of weighting mechanisms is the need to keep in mem-
ory all previously acquired data, an assumption hard to meet
in big data applications.

Sampling represents a viable alternative to windowing and
weighting. In particular, reservoir sampling [72] is a well
known sampling technique (based on randomization) able to
select a subset of elements (without replacement) from a data
stream. The basis of reservoir sampling is as follows: the sample

,x yt t^ h acquired at time t is stored in the reservoir with a
probability / ,p k t= where k is the user-defined size of the
reservoir; if a sample is inserted beyond the reservoir capacity,
one randomly selected sample present in the reservoir must be
discarded. An example of the use of reservoir sampling in pres-
ence of stream evolution can be found in [73], while a reser-
voir-sampling based change detection mechanism is described
in [74].

While ensembles of models are mainly considered in passive
approaches (as described in the next section), a few active
approaches based on ensemble models are also available in the
literature. For example, the idea to create a new model in the
ensemble as soon as a triggering mechanism (based on the
analysis of the classification error) gets activated is suggested in
[55]. JIT adaptation mechanisms have also been proposed in
the scenario of ensemble of classifiers [52].

B. Passive Approaches
As the name indicates, passive approaches do not seek to
“actively” detect the drift in the environment, but rather sim-
ply accept that the underlying data distributions may (or may
not) change at any time with any rate of change. To accom-
modate the uncertainty in the presence of change, passive
approaches perform a continuous adaptation of the model
parameters every time new data arrive. The continuous adap-
tation allows passive approaches to maintain an up-to-date

model at all times, thus, avoiding the potential pitfall associated
with the active approaches, that is, failing to detect a change or
falsely detecting a non-existent change (false alarm).

There are two main categories of passive approaches, those
that are based on updating a single classifier and those that add/
remove/modify members of an ensemble based system.

1) Single Classifier Models: The single classifier approaches
generally provide a lower computational cost than an ensem-
ble based approach, which makes single-classifier approaches
an attractive solution for massive data stream. Decision trees
are the mostly common classifiers used for data stream mining
with the very-fast decision tree (VFDT) learner being one of
the most popular [75]. The concept drift VFDT (CVFDT)
was proposed to cope with a nonstationary data stream by
using an adaptive sliding window for training [76]. CVFDT
was extended to examine multiple options at each node
whenever a node needs to be split [77]. Another single classi-
fier method is the online information network (OLIN), a
fuzzy-logic based approach that also exploits a sliding window
over the training data stream [78], [79]. More recently, neural
networks have also been gaining a renewed popularity for
learning in nonstationary environments. For example, a recent
work described an online extreme learning machine (ELM)
combined with a time-varying neural network for learning
from nonstationary data [80].

2) Ensemble Classifier Models: Among all passive based ap-
proaches for learning in nonstationary environments, ensem-
ble based models appear to be more popular, perhaps with
justifiable reasons. Ensemble based approaches provide a natu-
ral fit to the problem of learning in a nonstationary setting

Input: A Training Sequence ST0
 := {(xi, yi) : i e {1, ..., T0}};

1: Configure the classifier and the ICI-based CDT on ST0
;

3: while (1) do
4: Input receive new data xi (with supervised information
 yi whenever available);
5: if (ICI-based CDT detects a variation in the statistical
 distribution of inputs or in the classification error) then

12: end if

10: else

14: end while

6: Let T be the time of detection;

2: i = T0 + 1;

11: Integrate the available information (xi, yi) in the
 knowledge base of the classifier;

7: Activate the ICI-based refinement procedure to
 provide an estimate T (the time the change started);^

8: Characterize the new ST as the set of samples
 acquired between T and T;

^
^

9: Configure the classifier and the CDT on ST;^

13: Predict the output yi of the input samples xi (whenever
 yi is not available);

^

Figure 3 An active approach for learning in nonstationary environ-
ments: the JIT adaptive classifier.

20 IEEE Computational intelligence magazine | November 2015

and offer some distinct advantages: (i) they tend to be more
accurate than single classifier-based systems due to reduction
in the variance of the error; (ii) they have the flexibility to
easily incorporate new data into a classification model when
new data are presented, simply by adding new members to
the ensemble; (iii) they provide a natural mechanism to forget
irrelevant knowledge, simply by removing the corresponding
old classifier(s) from the ensemble [16], [81]. The latter two
points can be summarized by the so-called stability-plasticity
dilemma [82], which refers to the ability of a model either to
retain existing knowledge or learn new knowledge, but not
being able to do both at the same time equally well. Ensem-
ble-based systems provide a delicate balance along the stabili-
ty-plasticity spectrum, thanks to their ability to add or remove
classifiers (see Figure 4). This quality also makes ensemble sys-
tems a good fit for learning in nonstationary environments, as
the drift may only impact some subset of the existing knowl-
edge base, while leaving others portions of the previously ac-
quired knowledge still relevant. Ensembles can continuously
adapt the voting weights of the classifiers in a strategic man-
ner by measuring the loss of a single model on the most re-
cent data to provide more smaller error rates than a single
classifier solution.

The advantage of ensemble based learning in nonstation-
ary environments has also been shown theoretically, specifi-
cally proving that ensemble-based systems can provide more
stable results than single classifier based approaches in nonsta-
tionary settings [83], [84]. Theoretical advantages of ensemble
systems have also been shown with respect to their diversity,
as the diversity of an ensemble has been of particular interest
to the nonstationary learning community. Recent work has
shown that using both high and low diversity ensembles can

be beneficial for tracking different rates of
drift in the data stream [85], [86].

The streaming ensemble algorithm (SEA)
was one of the earliest examples of the
ensemble approaches for learning in nonsta-
tionary environments [87]. SEA simply adds
new classifiers as new batches of data arrive.
Once the ensemble reaches a predetermined
size, classifiers are removed from the ensem-

ble, based on a measure of quality of the classifier (e.g., an
examination of a single classifier’s predictions versus the
ensemble’s prediction, or simply the age of the classifier). Such
a strategy makes it possible for SEA to reduce any effect of the
stability-plasticity dilemma. Other similar approaches have also
been proposed that follow the “remove the least contributing
member” philosophy [81], [88].

Some of the other popular approaches for passive learning
include clever modifications of traditional learning algorithms.
For example, online bagging & boosting form the basis of
online nonstationary boosting algorithm (ONSBoost) [89],
which adds an update period to Oza’s traditional online boost-
ing [35] to remove classifiers with poor performance. Bifet et
al. developed several popular extensions to online bagging/
boosting, some of which have integrated techniques from pas-
sive and active approaches to track fast and gradual drifts [15],
[19]. Dynamic weighted majority (DWM) [90], is an extension
of the weighted majority algorithm (WM) [26] that extends
WM to data streams with concept drift, and uses an updated
period to add/remove classifiers. While sounding similar to
ONSBoost, DWM allows for an adaptive ensemble size,
whereas ONSBoost has a fixed sized ensemble. Other
approaches, such as the accuracy updated ensemble (AUE), fol-
low a similar methodology of examining how to keep/remove
classifiers in a fixed ensemble size [91]. Brieman’s popular ran-
dom forest algorithm has also been extended to learning non-
stationary data streams, as described in [92].

Another popular batch-based learning algorithm for non-
stationary environments is Learn++.NSE (NSE for nonsta-
tionary environments) [10], whose pseudocode is shown in
Figure 5. Learn++.NSE maintains an ensemble that applies a
time-adjusted loss function to favor classifiers that have been
performing well in recent times, not just the most recent
chunk of data. One of the advantages of the time-adjusted, or
discounted, loss is that it allows a classifier that performed
poorly a long time ago – and hence previously received a low
or zero voting weight – to be reactivated and be given a large
current voting weight, if it becomes relevant again, based on
its performance on the current environment, perhaps due to a
recurring or cyclic drift [83]. The algorithm processes a
sequence of datasets ,S t sampled from different, or drifting,
probability distributions, , .xp yt ^ h At each time step Learn++.
NSE measures the loss of the existing ensemble on the most
recent data in S t (line 2 and Equation (1)). Similar to Ada-
boost [93], Learn++.NSE holds a set of weights over the
instances (not to be confused with voting weights

S1, ...,St
Update WeightsAdd Expert ht to H

Measure ,(H, ft + 1)
,(H, ft + 1)

Predict St + 1

Figure 4 High-level block diagram used by incremental learning
ensembles in nonstationary environments. Data are received in
batches St over time. A classifier ht is built with the new data, which
is then added to the ensemble .H Unlabeled data from St 1+ is classi-
fied using the ensemble H and a loss is measured when labels from
St 1+ arrive.

Learning in an environment where the labels do
not become immediately available is also known as
verification latency, and requires a mechanism to
propagate class information forward through several
time steps of unlabeled data.

November 2015 | IEEE Computational intelligence magazine 21

over classifiers) in the data such that a large sampling weight
corresponds to instances that are more difficult to classify than
those with a low weight (line 3 and Equation (2)). In the
context of a drifting distribution, an instance from a new dis-
tribution is yet unlearned, and hence difficult to classify with
the existing ensemble. Unlike Adaboost, however, when
building a new classifier (line 4), Learn++.NSE does not min-
imize the loss on S t according to the weight distribution, but
uses the time-adjusted loss (see Equations (3), (4) and (5)),
giving the performance on recent times a higher voting
weight than the performances at distant past. Specifically,
unlike other ensemble approaches that use the most recent
loss [87], [94], Learn++.NSE applies a sigmoidal averaging
(line 6) to the classifiers’ loss history, which then favors classi-
fiers that are performing well in recent times. This time-
adjusted loss is one of the key strengths of Learn++.NSE that
allows the ensemble decision to be most up to date with
recent data. Learn++.NSE time-adjusted loss function has
been empir ically evaluated against existing ensemble
approaches, such as SEA, and the time-adjusted weighting has
shown to be quite effective for leveraging stability by recall-
ing previously learned concepts [10], [83]. Unlike many of
the other ensemble approaches, Learn++.NSE does not dis-
card old classifiers, but instead simply gives them a dynamic
voting weight, which of course allows the classifiers to be
reactivated during recurrent concepts. A three-way compari-
son of age (i.e., time) and error (i.e., accuracy) based weight-
ing that keeps the ensemble size fixed to discounted loss dis-
cussed above is described in [95], which showed that retaining
all classifiers and simply adjusting their weights using the sig-
moidal discounted loss function is preferable over fixed
ensemble approaches when classification performance is the
most important figure of merit.

Ensemble based approaches have also been applied to other
nonstationary learning settings, such as transfer learning and
multi-task learning (see Figure 1). For example, Efficient Life-
long Learning Algorithm (ELLA) was proposed to extend the
concept of multi-task learning to learn sparsely shared basis for
all task models presented over time [96], [97]. Knowledge is
transferred from a shared basis of task models to aid in learning
new tasks as they are presented.

C. Recent Challenges and Trends in
Nonstationary Environments
While learning from a nonstationary data stream is itself chal-
lenging, additional constraints, some of which are well known
standalone problems of machine learning on their own right,
can make the problem even more difficult. For example, class
imbalance, which occurs when the number of data instances
(or class priors) from different classes are disproportionately
different, is a well-studied problem in machine learning [98]–
[100]. Furthermore, in class imbalance problems, it is generally
the case that the under-represented class is the one that has
the higher misclassification cost. While class imbalance has
been extensively studied in stationary conditions, the field of

nonstationary learning of imbalanced data has received rela-
tively less attention. Uncorrelated bagging is one of the first
algorithms to address the joint problem of nonstationary and
imbalanced data by considering an ensemble of classifiers
trained on under sampled data from the majority class and
combining the ensemble models using an average of the classi-
fier outputs [101]–[103]. The Selectively Recursive Approach
(SERA) and Recursive Ensemble Approach (REA) are similar
approaches to uncorrelated bagging, which use a weighted
majority vote [94], [104], [105], though these approaches do
require access to historical data. Learn++.CDS (Concept Drift
with SMOTE) is a more recent batch-based incremental
learning algorithm for imbalanced-nonstationary data streams
that does not require access to historical data [106], [107].

Input: Datasets St := {(xi, yi) : i e [Nt]}, supervised
 learning algorithm BASE, and parameters a & b.
 Initialize: h1 = BASE(S1) and W1

1 = 1.
1: for t = 2,3, . . . do
2: Compute loss of the existing ensemble

where 1x evaluates to 1 if x = True otherwise it is 0.

3: Update instance weights

4: ht = BASE(St)

5: Evaluate existing classifiers with new data

where Zt is a normalization constant.

6: Compute time-adjusted loss

Set bk
t = fk

t / (1-fk
t).

8: end for
Output: Learn++ .NSE’s prediction on x

(1)1Ht–1(xj) ! yj
,

j = 1

Nt

Et = /1
Nt

(2)
Et Ht–1 (xj) = yj

1 otherwise
Dt(j) = 1

Zt

7: Update classifier voting weights: Wk
t = log 1

tk
t

(6) Ht(x) = arg max Wk
t 1hk(x) = ~.

k = 1~eX

t

/

,

,

.

(3)fk
t = Dt(j)1hk(xj) ! yj

.

j = 1

Nt

/

(5)

(4)

tk
t = {k

t - j bk
t - j.

j = 0

t - k

/

1

Zt
l 1 + exp(-a(t - k - b))

1{k
t =

Figure 5 Learn++.NSE is a passive approach for learning in nonsta-
tionary environments.

22 IEEE Computational intelligence magazine | November 2015

More recent works have extended these concepts to online al-
gorithms, such as those in [108], [109]. Developing a true on-
line algorithm for concept drift that does not require access to
historical data is extremely challenging due to difficulties asso-
ciated with measuring minority class statistics without violat-
ing the one-pass assumption using only a single instance at a
time. A recent effort examined the aforementioned learning
problem with multi-label classification [110], however, the
field of multi-label classification in nonstationary environ-
ments still remains an open area of research [110].

Another set of machine learning topics that are well-estab-
lished and studied in stationary settings is semi-supervised,
unsupervised, transductive and active learning modalities,
whose applications to nonstationary environments have only
recently been examined. In semi-supervised and transductive
learning, unlabeled data from the test set is leveraged to help
tune the parameters of the model [111]–[113]. In unsupervised
learning/clustering, the learning is done without using labeled
data [114]–[116], whereas in active learning (not to be con-
fused with active approaches to learning in nonstationary envi-
ronments, discussed in Section III-A) the algorithm identifies
the most important instances for the learning problem and
requests labels for those instances [117].

A particularly challenging form of semi-supervised or unsu-
pervised learning in nonstationary environments involves the
very practical scenario, where labeled data are scarce or only
available initially, followed by a stream of unlabeled data drawn
from a drifting distribution. We refer to such data as initially
labeled nonstationary streaming (ILNS) data, whose examples
include management of power grids, remote-sensing, cyber
security and malware detection, and data collection from haz-
ardous or hard to reach locations (e.g., nuclear plants, toxic sites,
underground pipelines), where labeled data can be rare or
expensive due to human expertise required for annotation.

Learning in an environment where the labels do not
become immediately available is also known as verification
latency, and requires a mechanism to propagate class informa-
tion forward through several time steps of unlabeled data.
Zhang et al. proposed an ensemble approach that combines
classifiers and clusters [118], which works well when labeled
data are available at least intermittently: labeled data are used to
train a classifier, whereas unlabeled data are used to form clus-
ters. New instances are then labeled by a majority vote that
includes label mapping between classifiers and clusters of the
ensemble. Another approach involves representing each drifting
class as a mixture of subpopulations, each drawn from

a particular parametric distribution. Given
initial labeled data, the subpopulations of the
unlabeled data can be tracked and matched
to those known sub-populations, as shown in
[119], [120], [121], and Krempl’s Arbitrary
subPopulation Tracker (APT) algorithm
[122]. The aforementioned approaches gener-
ally assume that (i) the drift is gradual and
can be represented as a piecewise linear func-

tion; (ii) each subpopulation is present at initialization, whose
covariance matrix remains unchanged; and (iii) the rate of drift
remains constant. APT involves a two-step process: first, expec-
tation maximization is used to determine the optimal one-to-
one assignment between the unlabeled and the drift-adjusted
labeled data (based on piecewise linearity of the drift), and then
the classifier is updated to reflect the population parameters of
newly received data.

Most recently, the COMPOSE framework (COMPacted
Object Sample Extraction) was introduced, which can handle
multiclass data, including the scenario of new classes or new
subpopulations, making only the gradual (limited) drift
assumption [123], [124]. Given labeled data only at the initial
time step, followed by entirely unlabelled data from a drifting
distribution, COMPOSE iteratively: (i) combine initial (or
current) labeled data with the new unlabeled data and train a
semi-supervised learning (SSL) algorithm to label the unla-
beled data; (ii) for each class, form a tight-envelope around
the data by using a density estimation approach that can
model multi-modal regions, such as a-shapes or Gaussian
mixture model; and (iii) compact (shrink) this envelope to
obtain the core support region of each class from which labeled
samples, core supports, can be drawn. These samples constitute
the new “labeled” instances to be used at the next iteration,
and are combined with the new unlabeled data, which are
then labeled using the SSL algorithm. COMPOSE is
intended for extreme verification latency, where new labeled
data is never available. However, if the nonstationary environ-
ment provides additional labeled data, perhaps only intermit-
tently, such data can naturally be used to update the core sup-
ports, and also help relax or remove the algorithm’s limited
drift assumption. Furthermore, if the problem domain allows
additional labeled data to be requested from the user in an
active learning setting, COMPOSE can easily be integrated
with an active learning algorithm to take advantage of such
an availability [125].

IV. Open Source Software and
Available Benchmarks
Many authors have made the code and data used in their publi-
cations available to the public. The references provided in this
section contain software implementations for algorithms that
can learn in nonstationary environments, and data sets that have
become standard benchmarks in the field. We do not claim this
list to be exhaustive, however, we believe that it provides several
opportunities for novices to get started, and established

Most existing approaches to detect changes in
data generating processes can be grouped into
four main families: Hypothesis Tests, Change-Point
Methods, Sequential Hypothesis Tests, and
Change Detection Tests.

November 2015 | IEEE Computational intelligence magazine 23

researchers to expand their contributions, all the while advanc-
ing the field by solving some of the open problems described
in the next section.

❏❏ Hierarchical ICI-based Change-Detection Tests (Matlab): Imple-
mentation of the hierarchical ICI-based CDT composed of
the ICI-based CDT at the detection layer and the Multivar-
iate Hotelling HT at the validation layer [126]. The ICI-
based CDT and the Hotelling HT can also be used as
stand-alone routines.
http://home.deib.polimi.it/boracchi/Projects/HierarchicalICI-
basedCDT.html

❏❏ Learn++.NSE (Matlab): Implementation of Learn++.NSE
(see Figure 5) with a CART base classifier [10].
https://github.com/gditzler/IncrementalLearning

❏❏ Massive Online Analysis (Java): Collection of online super-
vised, unsupervised and active learning models in Java [127].
http://moa.cms.waikato.ac.nz/

❏❏ Scalable Advanced Massive Online Analysis (Java): Collection
of distributed algorithms for mining big data streams in
Java [128].
http://jmlr.org/papers/v16/morales15a.html

❏❏ Online Nonstationary Boosting (Java): Pocock’s et al.’s imple-
mentation of ONSBoost [89].
http://www.cs.man.ac.uk/+pococka4/ONSBoost.html
The following datasets and code for generating datasets are

commonly used for assessing the performances of proposed
concept drift algorithms.

❏❏ Minku & Yao’s Concept Drift Generator (Matlab): Framework
for generating synthetic data streams [85].
http://www.cs.bham.ac.uk/+minkull/opensource.html

❏❏ Kuncheva’s Concept Drift Generator (Matlab): Framework for
generating data streams with concept drift [129].
http://pages.bangor.ac.uk/+mas00a/EPSRC_simulation_
framework/changing_environments_stage1a.htm

❏❏ Airlines Flight Delay Prediction: 100M+ instances contain
flight arrival and departure records. The goal is to predict if
a flight is delayed.
http://sourceforge.net/projects/moa-datastream/files/
Datasets/Classification/airlines.arff.zip

❏❏ Spam Classification: Collection of spam & ham emails col-
lected over two years [130].
http://www.comp.dit.ie/sjdelany/Dataset.htm

❏❏ Chess.com: Game records for a player over approximately
three years [131].
https://sites.google.com/site/zliobaite/resources-1

❏❏ KDD Cup 1999: Collection of network intrusion detec-
tion data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

❏❏ POLIMI Rock Collapse and Landslide Forecasting: Sensor mea-
surements coming from monitoring systems for rock col-
lapse and landslide forecasting deployed on the Italian Alps.
http://roveri.faculty.polimi.it/software-and-datasets
More software and data – with links provided – can be

found at http://github.com/gditzler/ConceptDriftResources
and http://roveri.faculty.polimi.it/software-and-datasets.

V. Topics of Future Interest & Conclusions
Learning in nonstationary environments represents a challeng-
ing and promising area of research in machine learning and
computational intelligence due to its increasing prevalence in
real-world applications, which has received a further recent
boost with proliferation of streaming and big data applications.
In such applications, using traditional approaches that ignore
the underlying drift is inevitably bound to fail, necessitating
effective algorithms that can track and adapt to changes. In this
paper, we provided a survey of the field of learning in nonsta-
tionary environments, the associated problems and challenges,
and recent developments for addressing those challenges.

While there is now a significant body of work, there are still
several open problems in learning in nonstationary environ-
ments. Some of these open problems – certainly not an
exhaustive list – include the following.

❏❏ Theoretical frameworks for learning: The field of
learning in nonstationary environments can benefit from a
more in-depth theoretical analysis of a general framework,
where performance bounds can be established with respect
to the drift type and rate.

❏❏ Nonstationary consensus maximization [132]–[134]:
Data sets are assumed to be labeled when presented to a
supervised algorithm, or unlabeled for an unsupervised one.
However, what if the data stream contains a mixture of
labeled and unlabeled data? Consensus maximization aims
at providing a framework to build and combine multiple
supervised and unsupervised models for prediction. One
interesting avenue of research is to examine the use of con-
sensus maximization in nonstationary environments.

❏❏ Unstructured and heterogeneous data streams: One
of the central issues with mining from big data is the need
to accommodate vast amounts of unstructured and heterog-
enous data (e.g., texts, images, graphs). Furthermore, the
data acquired for learning may have different characteristics,
such as multi-dimensionality, multi-label, multi-scale and
spatial relationships. The ongoing research on learning in
presence of concept drift should include new modeling and
adaptive strategies to be able to cope with such data.

❏❏ Definition of limited/gradual drift: “Limited” or “grad-
ual” drift is one of the primary assumptions commonly
made by algorithms for learning in nonstationary environ-
ments, particularly for unsupervised or semi-supervised
approaches. However, the formal definition of what consti-
tutes limited drift is an elusive one. Not only do we not
have established approaches to address those cases when the
limited drift assumption is violated, we do not even have a
formal definition of the limited drift that follows a concise
mathematical formulation. A mathematical definition would
allow the community to better understand the limitations of
an algorithm in a nonstationary environment.

❏❏ Transient concept drift and limited data: This setting
refers to evolving environments where concept drift is tran-
sient, and the number of instances related to the change in sta-
tionarity may be very limited. This is particularly challenging

24 IEEE Computational intelligence magazine | November 2015

because estimating the features that are used by change detec-
tion mechanisms are then computed using a very small sample
size, thus, adding an extra level of difficulty to confidently learn
the parameters of the nonstationary distribution.

Acknowledgments
This material is based in part upon work supported by the
U.S. National Science Foundation under Grant No ECCS-
1310496.

References
[1] Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, “Big data opportunities and chal-
lenges: Discussions from data analytics perspectives,” IEEE Comput. Intell. Mag., vol. 9, no.
4, pp. 62–74, Nov. 2014.
[2] P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, and P. Zegers, “Computational
intelligence challenges and applications on large-scale astronomical time series databases,”
IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 27–39, Aug. 2014.
[3] Y. Zhai, Y.-S. Ong, and I. W. Tsang, “The emerging ‘big dimensionality’,” IEEE Com-
put. Intell. Mag., vol. 9, no. 3, pp. 14–26, Aug. 2014.
[4] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans.
Knowledge Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.
[5] National Research Council, Frontiers in Massive Data Analysis. Washington, D.C.: Na-
tional Academies Press, 2013.
[6] A. Tsymbal, “The problem of concept drift: Definitions and related work,” Comput. Sci.
Dept., Trinity College, Dublin, Ireland, Tech. Rep., Apr. 2004, vol. 106.
[7] J. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept
drift adaptation,” ACM Comput. Surv., vol. 46, no. 4, p. 44, Apr. 2014.
[8] D. H. Widyantoro, T. R. Iorger, and J. Yen, “An adaptive algorithm for learning changes
in user interests,” in Proc. 8th Conf. Information Knowledge Management, 1999, pp. 405–412.
[9] D. H. Widyantoro, T. R. Ioerge, and J. Yen, “Tracking changes in user interests with a
few relevance judgments,” in Proc. ACM Int. Conf. Information Knowledge Management, 2003,
pp. 548–551.
[10] R. Elwell and R. Polikar, “Incremental learning of concept drift in nonstationary envi-
ronments,” IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517–1531, Oct. 2011.
[11] C. Alippi, Intelligence for Embedded Systems. Berlin, Germany: Springer-Verlag, 2014.
[12] J. Sarnelle, A. Sanchez, R. Capo, J. Haas, and R. Polikar, “Quantifying the limited and
gradual concept drift assumption,” in Proc. Int. Joint Conf. Neural Networks, 2015.
[13] W. Zang, P. Zhang, C. Zhou, and L. Guo, “Comparative study between incremental and
ensemble learning on data streams: Case study,” J. Big Data, vol. 1, no. 5, pp. 1–16, June 2014.
[14] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An incremental learning
algorithm for supervised neural networks,” IEEE Trans. Syst. Man Cybern., vol. 31, no. 4,
pp. 497–508, Nov. 2001.
[15] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda, “New ensemble meth-
ods for evolving data streams,” in Proc. Knowledge Data Discovery, 2009, pp. 139–148.
[16] L. I. Kuncheva, “Classifier ensembles for changing environments,” in Proc. 5th Int.
Workshop Multiple Classifier Systems, 2004, pp. 1–15.
[17] G. Carpenter and S. Grossberg, “ART 2: Self-organization of stable category recogni-
tion codes for analog input patterns,” Appl. Opt., vol. 26, no. 23, pp. 4919–4930, Dec. 1987.
[18] P. Domingos and G. Hulten, “A general framework for mining massive data streams,”
J. Comput. Graph. Stat., vol. 12, no. 4, pp. 945–949, 2003.
[19] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavalda, “Improving adaptive bagging
methods for evolving data streams,” in Proc. 1st Asian Conf. Machine Learning: Advances Ma-
chine Learning, 2009, pp. 27–37.
[20] A. Bifet, “Adaptive learning and mining for data streams and frequent patterns,” Ph.D.
dissertations, Universitat Politecnica de Catalunya, Catalunya, Spain, 2009.
[21] G. Widmer and M. Kubat, “Learning in the presence of concept drift and hidden con-
texts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr. 1996.
[22] C. Bishop, Pattern Recognition and Machine Learning. Berlin, Germany: Springer-Verlag, 2006.
[23] O. Chapelle, B. Scholköpf, and A. Zien, Semi-Supervised Learning. Cambridge, MA:
MIT Press, 2006.
[24] G. Carpenter, S. Grossberg, and J. Reynolds, “ARTMAP: A self-organizing neural
network architecture for fast supervised learning and pattern recognition,” in Proc. Int. Joint
Conf. Neural Networks, 1991, pp. 863–868.
[25] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen, “Fuzzy ART-
MAP: A neural network architecture for incremental supervised learning of analog multidi-
mensional maps,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 698–713, Sept. 1992.
[26] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Inform. Com-
put., vol. 108, no. 2, pp. 212–261, Feb. 1994.
[27] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Dataset Shift
in Machine Learning. Cambridge, MA: MIT Press, 2009.
[28] M. Sugiyama and M. Kawanabe, Machine Learning in Non-Stationary Environments. Cam-
bridge, MA: MIT Press, 2012.
[29] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, “Direct
importance estimation with model selection and its application to covariate shift adapta-
tion,” in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2008,
pp. 1433–1440.

[30] M. Sugiyama, M. Krauledat, and K. R. Müller, “Covariate shift adaptation by
importance weighted cross validation,” J. Mach. Learn. Res., vol. 8, pp. 985–1005,
May 2007.
[31] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowledge Data Eng.,
vol. 22, no. 10, pp. 1345–1359, Oct. 2010.
[32] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation with multiple
sources,” in Advances Neural Information Processing Systems. Cambridge, MA: MIT Press,
2009, pp. 1041–1048.
[33] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A
theory of learning from different domains,” Mach. Learn., vol. 79, nos. 1–2, pp. 151–175,
May 2010.
[34] G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, “An empirical analysis of
domain adaptation algorithms for genomic sequence analysis,” in Proc. Advances Neural In-
formation Processing Systems, 2009, pp. 1433–1440.
[35] N. Oza, “On-line ensemble learning,” Ph.D. dissertation, Univ. California, Berkeley,
CA, 2001.
[36] A. Bifet and E. Frank, “Sentiment knowledge discovery in Twitter streaming data,” in
Proc. Int. Conf. Discovery Science, 2010, pp. 1–15.
[37] J. G. Caporaso, C. L. Lauber, E. K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stom-
baugh, D. Knights, P. Gajer, J. Ravel, N. Fierer, J. Gordon, and R. Knight, “Moving pic-
tures of the human microbiome,” Genome Biol., vol. 12, no. 5, p. R50, 2011.
[38] N. Fierer and J. Ladau, “Predicting microbial distributions in space and time,” Nature
Methods, vol. 9, no. 6, pp. 549–551, 2012.
[39] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers-part II: Designing the clas-
sifier,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2053–2064, Dec. 2008.
[40] C. Alippi, G. Boracchi, and M. Roveri, “Just in time classifiers: Managing the slow drift
case,” in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 114–120.
[41] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,” in
Proc. Advances Artificial Intelligence–SBIA, 2004, pp. 286–295.
[42] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive window-
ing,” in Proc. SIAM Int. Conf. Data Mining, 2007.
[43] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers for recurrent concepts,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 620–634, Apr. 2013.
[44] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application,
vol. 104. Englewood Cliffs, NJ: Prentice Hall, 1993.
[45] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data streams,” in Proc. 30th
Int. Conf. Very Large Data Bases, 2004, vol. 30, pp. 180–191.
[46] G. Ditzler and R. Polikar, “Hellinger distance based drift detection for nonstationary
environments,” in Proc. IEEE Symp. Computational Intelligence Dynamic Uncertain Environ-
ments, 2011, pp. 41–48.
[47] J. P. Patist, “Optimal window change detection,” in Proc. 7th IEEE Int. Conf. Data Min-
ing Workshops, 2007, pp. 557–562.
[48] A. Bifet and R. Gavalda, “Kalman filters and adaptive windows for learning in data
streams,” in Proc. Int. Conf. Discovery Science, 2006, pp. 29–40.
[49] C. Alippi and M. Roveri, “An adaptive cusum-based test for signal change detection,”
in Proc. Int. Symp. Circuits Systems, 2006, pp. 1–4.
[50] C. Alippi and M. Roveri, “Just-in-time adaptive classif iers—Part I: Detecting
nonstationary changes,” IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145–1153, July
2008.
[51] C. Alippi, G. Boracchi, and M. Roveri, “Change detection tests using the ICI rule,” in
Proc. Int. Joint Conf. Neural Networks, 2010, pp. 1–7.
[52] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time ensemble of classifiers,” in Proc.
Int. Joint Conf. Neural Networks, 2012, pp. 1–8.
[53] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, “Real-time
data mining of non-stationary data streams from sensor networks,” Inform. Fusion, vol. 9, no.
3, pp. 344–353, July 2008.
[54] M. Harel, K. Crammer, R. El-Yaniv, and S. Mannor, “Concept drift detection through
resampling,” in Proc. Int. 31st Conf. Machine Learning, 2014. pp. 1009–1017.
[55] K. Nishida and K. Yamauchi, “Learning, detecting, understanding, and predicting
concept changes,” in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 2280–2287.
[56] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and R. Mo-
rales-Bueno, “Early drift detection method,” in Proc. 4th Int. Workshop Knowledge Discovery
from Data Streams, 2006, pp. 1–4.
[57] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical testing,” in
Discovery Science. Berlin, Germany: Springer-Verlag, 2007, pp. 264–269.
[58] D. M. Hawkins, Q. Peihua, and W. K. Chang, “The changepoint model for statistical
process control,” J. Qual. Technol., vol. 35, no. 4, pp. 355–366, Oct. 2003.
[59] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring of data
streams for changes in location and scale,” Technometrics, vol. 53, no. 4, pp. 379–389, 2011.
[60] A. Wald, “Sequential tests of statistical hypotheses,” Ann. Math. Stat., vol. 16, no. 2,
pp. 117–186, June 1945.
[61] P. Armitage and P. Armitage, Sequential Medical Trials. Oxford, U.K.: Blackwell, 1975.
[62] S. Sakthithasan, R. Pears, and Y. S. Koh, “One pass concept change detection for data
streams,” in Advances in Knowledge Discovery and Data Mining, Berlin, Germany: Springer-
Verlag, 2013, pp. 461–472.
[63] R. Pears, S. Sakthithasan, and Y. S. Koh, “Detecting concept change in dynamic data
streams,” Mach. Learn., vol. 97, no. 3, pp. 259–293, Jan. 2014.
[64] I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno, A. Ortiz-
Díaz, and Y. Caballero-Mota, “Online and non-parametric drift detection methods based
on hoeffding’s bounds,” IEEE Trans. Knowledge Data Eng., vol. 27, no. 3, pp. 810–823, Aug.
2014.

November 2015 | IEEE Computational intelligence magazine 25

[65] C. Alippi, G. Boracchi, and M. Roveri, “A just-in-time adaptive classification system
based on the intersection of confidence intervals rule,” Neural Netw., vol. 24, no. 8, pp.
791–800, Oct. 2011.
[66] C. Alippi, G. Boracchi, and M. Roveri, “A hierarchical, nonparametric, sequential
change-detection test,” in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 2889–2896.
[67] G. Boracchi, M. Michaelides, and M. Roveri, “A cognitive monitoring system for
contaminant detection in intelligent buildings,” in Proc. Int. Joint Conf. Neural Networks,
July 2014, pp. 69–76.
[68] C. Alippi, G. Boracchi, and M. Roveri, “An effective just-in-time adaptive classifier
for gradual concept drifts,” in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 1675–1682.
[69] I. Koychev, “Gradual forgetting for adaptation to concept drift,” in Proc. ECAI Work-
shop Current Issues Spatio-Temporal Reasoning, 2000, pp. 101–106.
[70] E. Cohen and M. Strauss, “Maintaining time-decaying stream aggregates,” in Proc. 22nd
ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Systems, 2003, pp. 223–233.
[71] R. Klinkenberg, “Learning drifting concepts: Example selection vs. example weight-
ing,” Intell. Data Anal., vol. 8, no. 3, pp. 281–300, Aug. 2004.
[72] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw., vol. 11, no.
1, pp. 37–57, Mar. 1985.
[73] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream evolution,” in
Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 607–618.
[74] W. Ng and M. Dash, “A test paradigm for detecting changes in transactional data
streams,” in Database Systems for Advanced Applications. Berlin, Germany: Springer-Verlag,
2008, pp. 204–219.
[75] P. Domingos and G. Hulton, “Mining high-speed data streams,” in Proc. 6th ACM
SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2000, pp. 71–80.
[76] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in
Proc. Conf. Knowledge Discovery Data, 2001, pp. 97–106.
[77] J. Liu, X. Li, and W. Zhong, “Ambiguous decision trees for mining concept-drifting
data streams,” Pattern Recognit. Lett., vol. 30, no. 15, pp. 1347–1355, Nov. 2009.
[78] L. Cohen, G. Avrahami, M. Last, and A. Kandel, “Info-fuzzy algorithms for mining
dynamic data streams,” Appl. Soft Comput., vol. 8, no. 4, pp. 1283–1294, Sept. 2008.
[79] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, “Real-time
data mining of non-stationary data streams from sensor networks,” Inform. Fusion, vol. 9, no.
3, pp. 344–353, July 2008.
[80] Y. Ye, S. Squartini, and F. Piazza, “Online sequential extreme learning machine in
nonstationary environments,” Neurocomputing, vol. 116, pp. 94–101, Sept. 2013.
[81] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Dynamic integration
of classifiers for handling concept drift,” Inform. Fusion, vol. 9, no. 1, pp. 56–68, Jan. 2008.
[82] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and architectures,”
Neural Netw., vol. 1, no. 1, pp. 17–61, 1988.
[83] G. Ditzler, G. Rosen, and R. Polikar, “Discounted expert weighting for concept
drift,” in Proc. IEEE Symp. Computational Intelligence Dynamic Uncertain Environments,
2013, pp. 61–67.
[84] G. Ditzler, G. Rosen, and R. Polikar, “Domain adaptation bounds for multiple expert
systems under concept drift,” in Proc. Int. Joint Conf. Neural Networks, 2014, pp. 595–601.
[85] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on online ensemble
learning in the presence of concept drift,” IEEE Trans. Knowledge Data Eng., vol. 22, no. 5,
pp. 731–742, May 2010.
[86] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing with concept
drift,” IEEE Trans. Knowledge Discovery Data Eng., vol. 24, no. 4, pp. 619–633, Apr. 2012.
[87] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for large-scale clas-
sification,” in Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2001,
pp. 377–382.
[88] M. Scholz and R. Klinkenberg, “An ensemble classifier for drifting concepts,” in Proc.
2nd Int. Workshop Knowledge Discovery Data Streams, 2005, pp. 53–64.
[89] A. Pocock, P. Yiapanis, J. Singer, M. Lujan, and G. Brown, “Online nonstationary
boosting,” in Proc. Int. Workshop Multiple Classifier Systems, 2010, pp. 205–214.
[90] J. Kolter and M. Maloof, “Dynamic weighted majority: An ensemble method for drift-
ing concepts,” J. Mach. Learn. Res., vol. 8, pp. 2755–2790, Dec. 2007.
[91] D. Brzezinski and J. Stephanowski, “Reacting to different types of concept drift: The
accuracy updated ensemble algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no.
1, pp. 81–94, Jan. 2014.
[92] H. Abdulsalam, D. Skillicorn, and P. Martin, “Classification using streaming random
forests,” IEEE Trans. Knowledge Data Eng., vol. 23, no. 1, pp. 22–36, Jan. 2011.
[93] Y. Freund and R. Shapire, “A decision-theoretic generalization of on-line learning and
an application to boosting,” J. Comput. Syst. Sci., vol. 55, pp. 119–139, Aug. 1997.
[94] S. Chen, H. He, K. Li, and S. Sesai, “MuSeRA: Multiple selectively recursive approach
towards imbalanced stream data mining,” in Proc. Int. Joint Conf. Neural Networks, 2010, pp.
2857–2864.
[95] R. Elwell and R. Polikar, “Incremental learning in nonstationary environments with
controlled forgetting,” in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 771–778.
[96] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning algorithm,” in Proc. Int.
Conf. Machine Learning, 2013, pp. 507–515.
[97] P. Ruvolo and E. Eaton, “Scalable lifelong learning with active task selection,” in Proc.
AAAI Conf. Artificial Intelligence, 2013, pp. 33–39.
[98] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Data Knowledge
Discovery, vol. 12, no. 9, pp. 1263–1284, Sept. 2009.
[99] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, June 2002.
[100] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special issue on learning from
imbalanced data sets,” SIGKDD Expl., vol. 6, no. 1, pp. 1–6, June 2004.

[101] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu, “Classifying data streams with skewed class
distributions and concept drifts,” IEEE Internet Comput., vol. 12, no. 6, pp. 37–49, Nov.–Dec.
2008.
[102] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining concept-
drifting data streams with skewed distributions,” in Proc. SIAM Int. Conf. Data Mining,
2007, pp. 203–208.
[103] K. Wu, A. Edwards, W. Fan, J. Gao, and K. Zhang, “Classifying imbalanced data
streams via dynamic feature group weighting with importance sampling,” in Proc. SIAM
Int. Conf. Data Mining, 2014, pp. 722–730.
[104] S. Chen and H. He, “SERA: Selectively recursive approach towards nonstationary
imbalanced stream data mining,” in Proc. Int. Joint Conf. Neural Networks, 2009, pp. 552–529.
[105] S. Chen and H. He, “Towards incremental learning of nonstationary imbalanced data
stream: A multiple selectively recursive approach,” Evolving Syst., vol. 2, no. 1, pp. 35–50, Mar.
2011.
[106] G. Ditzler and R. Polikar, “Incremental learning of concept drift from streaming im-
balanced data,” IEEE Trans. Knowledge Data Eng., vol. 25, no. 10, pp. 2283–2301, Oct. 2013.
[107] G. Ditzler and R. Polikar, “An incremental learning framework for concept drift and
class imbalance,” in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 736–473.
[108] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,”
IEEE Trans. Reliab., vol. 62, no. 2, pp. 434–443, June 2013.
[109] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble methods for online class
imbalance learning,” IEEE Trans. Knowledge Data Eng., vol. 27, no. 5, pp. 1356–1368, May 2015.
[110] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas, “Dealing with concept
drift and class imbalance in multi-label stream classification,” in Proc. Int. Joint Conf. Artificial
Intelligence, 2011, pp. 1583–1588.
[111] K. Yamauchi, “Incremental learning and model selection under virtual concept drift-
ing environments,” in Proc. Int. Joint Conf. Neural Networks, 2010, pp. 1–8.
[112] G. Ditzler, G. Rosen, and R. Polikar, “Transductive learning algorithms for nonsta-
tionary environments,” in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1–8.
[113] G. Ditzler and R. Polikar, “Semi-supervised learning in nonstationary environments,”
in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 2741–2748.
[114] M. Ackermann, C. Lammersen, M. Märtens, C. Raupach, C. Sohlerand, and K.
Swierkot, “StreamKM++: A clustering algorithms for data streams,” in Proc. 12th Workshop
Algorithm Engineering Experiments, 2010, pp. 1–31.
[115] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A framework for clustering evolving data
streams,” in Proc. 29th Int. Conf. Very Large Data Bases, 2003, pp. 81–92.
[116] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an evolving
data stream with noise,” in Proc. SIAM Conf. Data Mining, 2006, pp. 328–339.
[117] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning with drifting
streaming data,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 27–39, Jan. 2014.
[118] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster ensembles for mining
concept drifting data streams,” in Proc. Int. Conf. Data Mining, 2010, pp. 1175–1180.
[119] G. Krempl and V. Hofer, “Classification in presence of drift and latency,” in Proc. IEEE
Int. Conf. Data Mining Workshops, 2011, pp. 596–603.
[120] R. Alaiz-Rodriguez, A. Guerrero-Curieses, and J. Cid-Sueiro, “Class and subclass
probability re-estimation to adapt a classifier in the presence of concept drift,” Neurocomput-
ing, vol. 74, no. 16, pp. 2614–2623, Sept. 2011.
[121] V. Hofer and G. Krempl, “Drift mining in data: A framework for addressing drift in
classification,” Comput. Stat. Data Anal., vol. 57, no. 1, pp. 377–391, Jan. 2013.
[122] G. Krempl, “The algorithm apt to classify in concurrence of latency and drift,” Adv.
Intell. Data Anal., vol. 7014, pp. 222–233, 2011.
[123] K. Dyer and R. Polikar, “Semi-supervised learning in initially labeled non-stationary
environments with gradual drift,” in Proc. Int. Joint Conf. Neural Networks, 2012, pp. 1–9.
[124] K. B. Dyer, R. Capo, and R. Polikar, “COMPOSE: A semi-supervised learning
framework for initially labeled non-stationary streaming data,” IEEE Trans. Neural Networks
Learn. Syst., vol. 25, no. 1, pp. 12–26, Jan. 2013.
[125] R. Capo, K. B. Dyer, and R. Polikar, “Active learning in nonstationary environ-
ments,” in Proc. Int. Joint Conf. Neural Networks, 2013, pp. 1–8.
[126] C. Alippi, G. Boracchi, and M. Roveri, “A hierarchical, nonparametric, sequential
change-detection test,” in Proc. Int. Joint Conf. Neural Networks, 2011, pp. 2889–2896.
[127] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive online analysis,”
J. Mach. Learn. Res., vol. 11, pp. 1601–1604, Mar. 2010.
[128] G. D. F. Morales and A. Bifet, “SAMOA: Scalable advanced massive online analysis,”
J. Mach. Learn. Res., vol. 16, pp. 149–153, Jan. 2015.
[129] A. Narasimhamurthy and L. I. Kuncheva, “A framework for generating data to simulate
changing environments,” in Proc. IASTED Artificial Intelligence Applications, 2007, pp. 384–389,
[130] S. Delany, P. Cunningham, and A. Tsymbal, “A comparison of ensemble and case-
base maintenance techniques for handling concept drift in spam filtering,” in Proc. Int. Conf.
Artificial Intelligence, 2006, pp. 340–345.
[131] I. Žliobaité, “Change with delayed labeling: When is it detectable?” in Proc. IEEE Int.
Conf. Data Mining Workshops, 2010, pp. 843–850.
[132] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, “Graph-based consensus maximization
among multiple supervised and unsupervised models,” in Proc. Advances Neural Information
Processing Systems, 2009, pp. 585–593.
[133] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, “Graph-based consensus maximization
among multiple supervised and unsupervised models,” IEEE Trans. Knowledge Discovery Data
Eng., vol. 25, no. 1, pp. 15–28, Oct. 2011.
[134] S. Xie, J. Gao, W. Fan, D. Turaga, and P. S. Yu, “Class-distribution regularized con-
sensus maximization for alleviating overfitting in model combination,” in Proc. 20th ACM
SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2014, pp. 303–312.
�

