
S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 254 – 263, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Can AdaBoost.M1 Learn Incrementally?
A Comparison to Learn++ Under Different

Combination Rules

Hussein Syed Mohammed, James Leander, Matthew Marbach, and Robi Polikar*

Electrical and Computer Engineering, Rowan University, Glassboro,
NJ 08028, USA

polikar@rowan.edu

Abstract. We had previously introduced Learn++, inspired in part by the en-
semble based AdaBoost algorithm, for incrementally learning from new data,
including new concept classes, without forgetting what had been previously
learned. In this effort, we compare the incremental learning performance of
Learn++ and AdaBoost under several combination schemes, including their na-
tive, weighted majority voting. We show on several databases that changing
AdaBoost’s distribution update rule from hypothesis based update to ensemble
based update allows significantly more efficient incremental learning ability,
regardless of the combination rule used to combine the classifiers.

1 Introduction

Learning from new data without forgetting prior knowledge is known as incremental
learning, and it is encountered often real world applications. This is because suffi-
ciently dense and a representative set of training examples is usually required for
satisfactory classifier performance, however, acquisition of such a representative
dataset often become available in small and separate batches at different times. Under
such conditions, it is necessary to incrementally update an existing classifier to ac-
commodate new data while retaining the information from old data.

Traditionally, when new data become available, previous classifiers are discarded
and retrained with the composite data obtained by combining all the data accumulated
thus far. However, this approach results in loss of all previously acquired information,
and it is commonly known as catastrophic forgetting [1]. Furthermore, this approach
may not even be feasible, if the original dataset is no longer available.

Learning new data incrementally without forgetting previously acquired knowl-
edge raises the stability-plasticity dilemma [2]: acquiring new knowledge requires
plasticity, whereas retaining previously acquired knowledge requires stability. The
challenge is to achieve a meaningful balance between the two conflicting properties.

Various forms of incremental learning have been studied under various conditions.
In one extreme end, incremental learning is trivialized by allowing retraining with old
data, while on the other end, an incremental learning algorithm is expected to learn in
an online incremental setting, where learning is carried out in an instance-by-instance

* Corresponding author.

 Can AdaBoost.M1 Learn Incrementally? 255

basis with some instances introducing new classes. Algorithms that are currently
available for incremental learning, such as ARTMAP [3], typically fall somewhere in
the middle of this spectrum.

2 Learn++ for Incremental Learning

Learn++ inspired in part by the ensemble structure of the AdaBoost.M1 algorithm [4],
exploits the synergistic expressive power of an ensemble of classifiers to incremen-
tally learn additional information from new data [5,6]. Specifically, for each database
that becomes available, Learn++ generates a number of diverse classifiers, which are
then combined using a suitable combination rule (originally, the weighted majority
voting). The pseudocode of Learn++ is shown in Figure 1.

Inputs to Learn++ are the training data Sk of mk samples drawn from the current da-
tabase DBk, a supervised learning algorithm BaseClassifier, and an integer Tk, speci-
fying the number of classifiers to be generated for database DBk. Learn++ generates an
ensemble of classifiers using different subsets of each training data, Sk. This is
achieved by iteratively updating a distribution Dt, t =1,…,Tk from which training

Inputs: For each dataset drawn from DBk k=1,2,…,K
• Sequence of mk examples Sk={(xi,yi) | i=1,…,mk}
• Supervised learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations.

Do for each k=1,2,…,K:

Initialize kk miimiDiw ,,2,1 , ,1)()(11 =∀== (1)

If k>1, Go to Step 5, evaluate current ensemble on new Sk, update weight distribution; End If
Do for t = 1,2,...,Tk:

1. Set ()
1

km

t ti
w i

=
= ∑wtD so that Dt is a distribution

 (2)
2. Draw a training TRt subset from the distribution Dt, and train BaseClassifier with TRt.
3. Obtain a hypothesis ht and calculate its error on Sk. If εt > ½, discard ht, go to step 2.

 ∑
≠

=
it yhi

tt iD
)(:

)(
ix

ε (3)

4. Call CombinationRule, and obtain the composite hypothesis Ht
5. Compute the error of the composite hypothesis

 []∑ ≠=∑=
=≠

k

iit

m

i
iitt

yHi
tt yHiDiDE

1)(:
|)(|)()(x

x

 (4)

6. Set ()1t t tB E E= − , and update the weights: (5)

 1 [| () |]
1

, ()
() () ()

1 ,
t i t t iH y

t t t t

B if H y
w i w i B w i

otherwise
− ≠

+

=⎧
= × = × ⎨

⎩
i ix x (6)

 Call CombinationRule and output the final hypothesis.

Fig. 1. Pseudocode of Algorithm Learn++

256 H.S. Mohammed et al.

subsets are chosen. The distribution itself is obtained by normalizing a set of weights
assigned to each instance based on the classification performance of the classifier on
that instance. In general, instances that have not yet been learned or seen are given
higher weights to increase their chance of being selected into the next training data.

At each iteration t, the distribution Dt is obtained by normalizing the weights wt of
the instances updated based on their classification by the previous ensemble (step 1 of
the inner Do loop). A new training subset TRt is drawn according to Dt and the Base-
Classifier is trained with TRt to generate the hypothesis ht (step 2). The error εt of this
hypothesis is calculated on the current training data Sk by adding the distribution
weights of the misclassified instances (step 3). If εt>1/2, current ht is deemed too
weak, and is replaced with a new ht, generated from a fresh TRt. If εt<1/2, the current
hypothesis is retained, and all hypotheses generated during the previous t iterations
are combined, using an appropriate combination schemes described later, to construct
the composite hypothesis Ht (step 4). The composite error Et made by Ht is determined
by adding the distribution weights of all instances misclassified by the ensemble (step
5). The normalized composite error, Bt is computed, and used in updating the weights
wt(i), which are then used in computing the next distribution Dt+1, which in turn is
used in selecting the next training subset TRt+1. Once Tk hypotheses are generated for
each database DBk, the final hypothesis Hfinal is obtained by combining all hypotheses
by using one of the combination rules described below.

While Learn++ uses similar ensemble generation structure as AdaBoost, there are
several key differences: AdaBoost runs on a single database; it has no distribution re-
initialization; and it stops and aborts if εt > ½ for any ht. Most importantly, AdaBoost
is designed to improve the performance of a weak classifier, for which it uses the
performance of the current single hypothesis ht to update its weight distribution [4].
Learn++, however, creates a composite hypothesis Ht representing the ensemble deci-
sion, and uses the ensemble performance to update its weight distribution. This allows
a more efficient incremental learning ability, particularly if the new database intro-
duces instances from a previously unseen class. When instances of a new class are
introduced, an existing ensemble Ht – not yet seen instances of the new class, is bound
to misclassify them, forcing the algorithm to focus on these instances that carry novel
information. For a weight update rule based on the performance of ht only, the train-
ing performance of the first ht on instances from the new class is independent of the
previously generated classifiers. Therefore, the new ht is not any more likely to mis-
classify new class instances, which then causes AdaBoost to focus on other difficult to
learn instances, such as outliers, rather than the instances with novel information
content. It is this claim that we investigate in this effort.

Learn++ was previously shown to be capable of incremental learning, however, it’s
incremental learning ability has not been compared to that of AdaBoost. Given that
AdaBoost was not originally designed for incremental learning, one can argue
whether it is fair to compare AdaBoost to an algorithm that is designed for incre-
mental learning. However, Learn++ shares much of its algorithmic detail with
AdaBoost. The main difference is the distribution update rule being based on ensem-
ble decision, rather than the previous hypothesis. Therefore, a questions of particular
interest is as follows: is the incremental learning ability of Learn++ primarily due
to creating and combining an ensemble of classifiers, or is it due to the strategic
selection of the distribution update rule? If incremental learning ability is provided

 Can AdaBoost.M1 Learn Incrementally? 257

primarily by combining an ensemble of classifiers, then AdaBoost should also be able
to learn incrementally.

In order to answer this question, and establish the true impact of the difference in
distribution update rules, the two algorithms must be made equivalent in all other
aspects. Therefore, we slightly modify AdaBoost to allow it to generate additional
ensembles with new data, using the same distribution re-initialization as Learn++ (but
retaining its own single-hypothesis-based distribution update rule). We also allow
AdaBoost to generate a replacement hypothesis for any ht that does not satisfy εt < ½
requirement. Therefore, the only difference left between the modified AdaBoost and
Learn++

 is the distribution update rule.

3 Combination Rules

Properties of different combination rules for ensemble systems have been well re-
searched [7,8]. While the best combination rule is often application dependent, certain
rules, such as the sum, weighted majority, and decision templates have repeatedly
shown superior performance over others, and hence are used more often. Both
AdaBoost and Learn++ were originally designed to be used with weighted majority
voting. However, in this study, we also compare each with different combination
rules, to determine whether the combination rule (in addition to distribution update
rule) has any effect on incremental learning performance.

Some combination rules, namely, simple and weighted majority voting (VMW),
only need access to class labels. Others need the degree of support given by the classi-
fier to each class. For the first group, let us define the decision of the tth classifier as
the binary valued dt,j Є {0,1}, t=1,…,T and j=1,…,C, where T is the number of classi-
fiers and C is the number of classes. If classifier ht correctly identifies class ωj, dt,j=1,
and zero otherwise. For other rules, we have continuous valued dt,j Є [0,1], which
represent the degree of support given by classifier ht to class ωj. For any given classi-
fier, these supports are normalized to add up to 1 over different classes, and are often
interpreted as class conditional posterior probabilities, P(ωj|x).

We use the decision profile matrix [9], to formalize all combination rules: for an
instance x, the decision profile matrix DP(x), consists of the elements dt,j. The tth row
of DP(x) is the support given by the tth classifier to each class, and the jth column is
the support received by class ωj from all classifiers. The total support for each class is
obtained as a simple function of the supports received by individual classifiers. We
represent the total support received by class ωj as

1, ,() [(), , ()]j j T jx d x d x . (7)

where ℑ (.) is the combination function. We discuss the sum, product, median, simple
majority, weighted majority, and decision template combination rules.

In an ensemble system, the final decision is the class that receives the largest sup-
port from the ensemble. Let ωk be the winning class. In simple majority voting, ωk is
the class that is selected by most number of classifiers. For binary valued dt,j,

, ,
1

1 1

max
T Tc

i k t j
j

t t

d d
== =

=∑ ∑ (8)

258 H.S. Mohammed et al.

If some classifiers are known to be more competent than others, giving higher
weights to those classifiers may improve the performance. Denoting the voting weight
for classifier ht with Vt, weighted majority voting (WMV) can be obtained as

, ,
1

1 1

max
T Tc

t t k t t j
j

t t

V d V d
== =

=∑ ∑ . (9)

In original Learn++ and AdaBoost, these weights are inversely proportional to the
training errors of ht:

()()log 1t t tV ε ε= − (10)

The sum, product and median rules are similar, defined by the following expres-
sions, respectively

,
1

1
() ()

T

j t j
t

x d x
T

μ
=

= ∑ (11)

,
1

1
() ()

T

j t j
t

x d x
T

μ
=

= ∏
(12)

,
1...

() { ()}j t j
t T

x median d xμ
=

=
(13)

In each case, the ensemble decision is the class ωk
 for which the total support μj(x)

is highest.
 Perhaps the most sophisticated combination rule that uses all supports given by all
classifiers to all classes is Kuncheva’s decision templates [9]. For each class ωj, the
decision template DTj is the average of all decision profiles in training data Xj

1
()

j

j
j

DT DP
M ∈

= ∑
x

x
X

(14)

where Xj is the set of instances coming from class ωj; and Mj is the cardinality of Xj.
The class ωk whose decision template is closest to the decision profile of the current
instance, e.g., using squared Euclidean distance, is chosen as the ensemble decision.
The closest match then decides on the label of x.

2

,
1 1

1
() 1 (,) ()

T C

j j t k
t k

x DT t k d x
T C

μ
= =

⎡ ⎤= − −⎣ ⎦× ∑∑ (15)

4 Simulation Results

We present and compare simulation results of Learn++ and AdaBoost.M1 on several
real-world and benchmark databases, using six different combination rules on each.
All results are given with 95% confidence interval, obtained through 10 fold cross
validation. Each database was partitioned into n sets: S1~Sn for training, where each
set introduced one or more new classes, and an additional TEST set for validation,
which included instances from all classes. Ensemble generalization performances
after each training session TS1 ~ TSn (trained on S1~Sn separately, and tested on
TEST) are presented below. Multilayer perceptrons were used as base classifiers.

 Can AdaBoost.M1 Learn Incrementally? 259

4.1 Ultrasonic Weld Inspection (UWI) Dataset

The UWI dataset was obtained from ultrasonic inspection of submarine hull welding
regions. The welding regions, also known as heat-affected zones, are highly suscepti-
ble to growing a variety of defects, including potentially dangerous cracks. The dis-
continuities within the material, such as air gaps due to cracks, cause the ultrasonic
wave to be reflected back, and received by the transducer. The reflected ultrasonic
wave, also called an A-scan, serves as the signature pattern of the discontinuity,
which is then analyzed to determine whether it was originated from a crack. However,
this analysis is hampered by the presence of other types of discontinuities, such as
porosity, slag and lack of fusion (LOF), all of which generate very similar A-scans,
resulting in a very challenging database with highly overlapping classes. The data
distribution and percent generalization performances of both algorithms are shown in
Tables 1 and 2 respectively. The number of classifiers used to train datasets S1, S2 and
S3 were set as 3, 5 and 7, respectively, and kept constant for all experiments. The best
performance for each algorithm at the end of TS3 is shown in bold.

Table 1. Data distribution for UWI dataset

Dataset ↓ Crack Slag LOF Porosity

S1 300 300 0 0
S2 200 200 200 0
S3 150 150 137 99

TEST 200 200 150 125

Table 2. Percent test performance of AdaBoost.M1 and Learn++ on UWI dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 49.6±1.2 59.1±1.2 57.8±1.6 52.0±0.6 65.7±0.8 70.5±0.8
PRODUCT 48.8±1.2 59.0±1.1 57.1±2.6 51.4±0.6 62.4±0.6 65.0±0.7
MEDIAN 49.1±1.3 58.7±1.2 56.6±1.6 51.5±0.7 65.1±0.8 70.8±0.6
M. VOTING 49.0±0.8 58.8±1.1 58.5±1.1 51.4±0.6 65.5±0.7 70.3±0.8
WMV 49.6±1.6 59.2±1.1 59.3±1.0 51.4±0.9 65.1±1.0 70.6±0.5
DT 49.0±0.8 59.6±1.0 58.5±1.1 52.1±0.8 65.2±0.6 68.8±0.6

Table 2 shows that both algorithms were able to learn incrementally from the new

data, as indicated by the improved generalization performances from one training
session to the next. Learn++ outperformed AdaBoost, however, with statistical signifi-
cance, on all combination rules. Furthermore, the performance of AdaBoost mildly
deteriorated in TS3, compared to its performance on the previous session, TS2.
AdaBoost could not learn the new class information, at least using the number of
classifiers specified. As mentioned earlier, this is attributed to the composite hypothe-
sis based weight update rule of Learn++. The performance differences among differ-
ent combination rules were mostly statistically insignificant for both algorithms.

260 H.S. Mohammed et al.

4.2 Volatile Organic Compound (VOC) Dataset

This database was generated from responses of six quartz crystal microbalances
(QCMs) to various concentrations of five volatile organic compounds, including etha-
nol (ET), xylene (XL), octane (OC), toluene (TL), and trichloroethylene (TCE). The
data distribution, indicating a new class introduced with each dataset, is shown in
Table 3, and the mean generalization performances of AdaBoost.M1 and Learn++ for
the VOC database are presented in Table 4. S1 had instances from ET, OC and TL, S2
added instances primarily from the new class TCE (and fewer instances from the
previously three), and S3 added instances from XL (and fewer instances from the
previous four). The number of classifiers used to train datasets S1, S2 and S3 were
chosen as 2, 3 and 5, respectively, and kept constant for all experiments.

Table 3. Data distribution for VOC dataset

Dataset ↓ ET OC TL TCE XL

S1 20 20 40 0 0
S2 10 10 10 25 0
S3 10 10 10 15 40

TEST 24 24 52 24 40

Table 4. Percent test performance of AdaBoost.M1 and Learn++ on VOC dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 61.1±0.7 63.8±2.0 67. ±7.5 62.0±1.3 71.4±0.5 83.2±3.4
PRODUCT 60.3+1.4 61.2±5.3 70.9±3.7 60.8±0.5 62.4±3.2 71.4±4.0
MEDIAN 60.6±0.8 59.3±6.5 67.2±4.5 61.2±0.4 66.2±1.1 79.8±3.3
M.VOTING 58.9±3.4 63.9±1.8 67.7±4.5 61.4±0.4 69.9±1.3 85.1±1.1
WMV 60.3±1.1 59.2±6.8 69.9±2.5 61.5±0.4 71.6±0.6 85.2±1.5
DT 60.2±1.1 62.6±2.8 63.3±6.1 61.2±0.5 67.2±1.2 76.7± 2.4

While both algorithms achieved incremental learning, Learn++ performed signifi-

cantly better than AdaBoost.M1 on all combination rules, and usually with smaller
confidence intervals. As expected, majority voting, weighted majority voting and the
sum rule in general performed better than others.

4.3 Wine

The wine database from the UCI repository [10] is commonly used as a benchmark
dataset. The dataset describes chemical analysis of 13 constituents found in three
types of Italian wines, derived from three different cultivars of the same region. The
data distribution and the test performances of both algorithms are shown in Tables 5
and 6 respectively. S1 had instances only from classes 1 and 2, whereas S2 introduced
class 3. The number of classifiers used to train datasets S1 and S2 were set as 2 and 4,
respectively, and kept constant for all experiments.

 Can AdaBoost.M1 Learn Incrementally? 261

Table 5. Data distribution for Wine dataset

Dataset ↓ Wine1 Wine2 Wine3

S1 30 40 0
S2 10 10 30

TEST 71 28 21

Table 6. Percent test performance of AdaBoost.M1 and Learn++ on Wine dataset

AdaBoost.M1 Learn++
TS1 TS2 TS3 TS1

SUM 60.2±6.1 77.8±9.7 61.2±4.1 82.2±6.1
PRODUCT 59.1±8.7 81.4±10.2 60.5±2.6 82.1±6.2
MEDIAN 59.0±7.2 68.1±16.8 64.5±2.4 84.0±9.1
M.VOTING 58.8±6.6 77.1±14.3 60.0±2.4 82.9±8.5
WMV 54.7±8.3 76.0±12.9 62.8±3.1 82.6±6.6
DT 62.1±3.8 73.4±16.8 60.7 ±3.4 70.7±4.8

As in previous datasets, both algorithms were able to learn incrementally from the

new data, as seen by the improved generalization performances from one training
session to the next. Learn++, however, performed significantly better than
AdaBoost.M1 on all combination rules except the decision templates, and usually
with smaller (though still somewhat large) confidence intervals. We should add how-
ever that due to somewhat large confidence intervals, the performance differences
among different combination rules were not statistically significant.

4.4 Optical Character Recognition Database

Also obtained from the UCI repository [10], OCR database consists of handwritten
numeric characters, 0 through 9, digitized on an 8x8 grid creating 64 attributes for 10
classes. The data distribution and the mean performances of the two algorithms are
shown in Tables 7 and 8, respectively. Note that the data distribution was made delib-
erately challenging, specifically designed to test the algorithms’ ability to learn multi-
ple new classes with each dataset, while retaining the knowledge of previously
learned classes. In particular, S1 consisted of classes 0,1,2,5,6 and 9, S2 added classes
3 and 4, and S3 introduced classes 7 and 8, but removes instances from classes 0 and
1. The number of classifiers used to train datasets S1, S2 and S3 were set as 3, 3 and 3,
respectively, and kept constant for all experiments. Interesting observations can be
made from the generalization performances of AdaBoost and Learn++.

Table 7. Data distribution for OCR dataset

Dataset ↓ 0 1 2 3 4 5 6 7 8 9
S1 250 250 250 0 0 250 250 0 0 250

S2 100 100 100 250 250 100 100 0 0 100

S3 0 0 50 150 150 50 50 400 400 0

TEST 100 100 100 100 100 100 100 100 100 100

262 H.S. Mohammed et al.

Table 8. Percent test performance of AdaBoost.M1 and Learn++ on OCR dataset

AdaBoost.M1 Learn++

TS1 TS2 TS3 TS1 TS2 TS3
SUM 57.4±2.0 71.1±2.6 66.2±2.2 59.2±0.2 77.0±1.2 88.5±1.5
PRODUCT 58.0±0.5 70.3±2.6 64.5±2.8 59.8±1.1 78.2±0.5 88.4±1.4
MEDIAN 55.3±4.4 70.5±2.7 67.0±1.9 59.0±0.2 77.9±0.2 90.5±1.8
M.VOTING 58.1±0.5 71.9±2.7 65.0±2.5 58.6±0.3 75.5±1.0 82.0±0.7
WMV 57.4±2.0 68.8±1.8 67.0±3.8 59.2±0.1 77.2±0.4 89.3±1.0
DT 58.3±0.5 72.5±1.4 65.7±3.4 59.3±0.4 79.8±0.5 82.5±1.7

Similar to the previous databases discussed above, Learn++ outperformed

AdaBoost, with statistical significance, on all combination rules. It is interesting to
observe that AdaBoost incrementally learns the second database, however it displays
substantial amount of forgetting from second to third training session. This indicates
that AdaBoost is having difficulty in learning new classes, and at the same time re-
taining the information it had previously learned, particularly if subsequently gener-
ated classifiers are no longer trained with instances of previously seen classes. Con-
versely, Learn++ was able to achieve upper 80% to lower 90% classification perform-
ance, using any of the sum, product, median and weighted majority voting combina-
tion rules. Considering that the database was designed to test the incremental learning
and knowledge retaining ability of the algorithm (by leaving instances of certain
classes out), we can conclude that Learn++ places itself more favorably along the plas-
ticity–stability spectrum.

5 Conclusion and Discussion

Our results indicate that AdaBoost.M1 can indeed learn incrementally from new data;
however, its effectiveness is limited by its single-hypothesis-based distribution update
rule. We should quickly point out that this is not a short coming of AdaBoost, as the
algorithm was not originally intended for incremental learning, but rather to allow
weak classifiers learn in an ensemble structure. As consistently seen in all results, and
in particular in hostile learning environments, where the consecutive databases may
introduce instances of new classes and/or remove instances from previously seen
classes, the ensemble-based distribution update rule of Learn++ provides substantial
performance improvement.. Therefore, we conclude that the ensemble based distribu-
tion update rule is indeed crucial in achieving efficient incremental learning.

We also note that Learn++ achieved narrower confidence intervals in its perform-
ances. This is significant, because a narrower confidence interval indicates better
stability and robustness, qualities of considerable concern in incremental learning.
Improved generalization performance along with a narrower confidence interval
shows that Learn++ can achieve a delicate balance on the stability-plasticity spectrum.

We should note that despite its relative inferior performance in incremental learn-
ing, AdaBoost is still a strong contender: it has certainly shown promise in incre-
mental learning of certain applications, including learning new classes. We believe
that AdaBoost can still be used for incremental learning applications where the

 Can AdaBoost.M1 Learn Incrementally? 263

learning environment is less hostile than the one we created in our simulations. Also,
since we were interested in efficient incremental learning, the ensemble sizes were
kept to minimum. If AdaBoost were allowed to generate additional classifiers, it
could have achieved better performances. The incremental learning ability of
AdaBoost under such cases is currently being investigated.

Unlike the distribution update rule, the choice of specific combination rule does not
appear to be very influential in the incremental learning performance of either algo-
rithm. While there were some differences – sometimes significant – such differences
were not consistent, and we believe that the impact of a particular combination rule is
relatively minor, compared to that of the distribution update rule.

References

1. R. French, “Catastrophic forgetting in connectionist networks,” Trends in Cognitive Sci-
ences, vol. 3, no.4, pp. 128-135, 1999.

2. S.Grossberg, “Nonlinear neural networks: principles, mechanisms and architectures,” Neu-
ral Networks, vol. 1, no. 1, pp. 17-61, 1988.

3. G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, “Fuzzy
ARTMAP: A neural network architecture for incremental learning of analog multidimen-
sional maps,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp.698-713, 1992.

4. Y. Freund, R. Schapire, Decision-theoretic generalization of on-line learning and an appli-
cation to boosting, J. Comp. Sys. Sci., vol. 55, no. 1, pp. 119-13, 1997.

5. R. Polikar, L. Udpa, S. Udpa, V. Honavar., “Learn++: An incremental learning algorithm
for supervised neural networks,” IEEE Trans. on System, Man and Cybernetics (C), vol.
31, no. 4, pp. 497-508, 2001.

6. R. Polikar, J. Byorick, S. Krause, A. Marino, M. Moreton, “Learn++: A classifier
independent incremental learning algorithm for supervised neural networks,” Proc. of Int.
Joint Conference on Neural Networks (IJCNN 2002), vol. 2, pp. 1742-1747, Honolulu, HI,
12-17 May 2002.

7. J. Kittler, M. Hatef, R. P.W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans.
on Pattern Analy. and Machine Int., vol. 20, no. 3, pp.226-239, 1998.

8. L.I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley &
Sons, N.J., 2004.

9. L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, "Decision templates for multiple classi-
fier fusion: an experimental comparison," Pattern Rec., vol. 34, no. 2, pp. 299-314, 2001.

10. C.L. Blake and C.J. Merz, Univ. of California, Irvine, Repository of Machine Learning
Databases at Irvine, CA.

	Introduction
	Learn++ for Incremental Learning
	Combination Rules
	Simulation Results
	Ultrasonic Weld Inspection (UWI) Dataset
	Volatile Organic Compound (VOC) Dataset
	Wine
	Optical Character Recognition Database

	Conclusion and Discussion
	References

