
Ensemble of Classifiers Based Incremental Learning with
Dynamic Voting Weight Update

Robi Polikar, Stefan Krause and Lyndsay Burd
Electrical and Computer Engineering, Rowan University,

136 Rowan Hall, Glassboro, NJ 08028, USA.

Abstract – An incremental learning algorithm based on
weighted majority voting of an ensemble of classifiers is intro-
duced for supervised neural networks, where the voting weights
are updated dynamically based on the current test input of un-
known class. The algorithm’s dynamic voting weight update fea-
ture is an enhancement to our previously introduced incre-
mental learning algorithm, Learn++. The algorithm is capable
of incrementally learning new information from additional
datasets that may later become available, even when the new
datasets include instances from additional classes that were not
previously seen. Furthermore, the algorithm retains formerly
acquired knowledge without requiring access to datasets used
earlier, attaining a delicate balance on the stability-plasticity di-
lemma. The algorithm creates additional ensembles of classifiers
based on an iteratively updated distribution function on the
training data that favors training with increasingly difficult to
learn, previously not learned and/or unseen instances. The final
classification is made by weighted majority voting of all classi-
fier outputs in the ensemble, where the voting weights are de-
termined dynamically during actual testing, based on the esti-
mated performance of each classifier on the current test data in-
stance. We present the algorithm in its entirety, as well as its
promising simulation results on two real world applications.

I. INTRODUCTION
A. Incremental Learning
As most researchers in machine learning are painfully

aware, the generalization performance of any learning algo-
rithm is acutely contingent upon the availability of an ade-
quate and representative training dataset. Often times, how-
ever, acquisition of such data is tedious, time consuming and
expensive. Therefore, it is not unusual for such data to be-
come available in batches over a period of time. Furthermore,
it is also not unusual for data belonging to different classes to
be acquired in separate data acquisition episodes. Depending
on the exact nature of the application, waiting for the entire
data to become available can be ineffective, financially un-
economical, technically improvident, or even unfeasible –
particularly if the exact nature of future data is unknown.
Under such scenarios, it would be more effective to be able
to start training a classifier with the existing data, and then
incrementally update this classifier to accommodate new data
without, of course, compromising classification performance
on previously seen data.

Since most of the commonly used classifiers, including the
ubiquitous multilayer perceptron (MLP) and the radial basis
function (RBF) networks are unable to accommodate such
incremental learning, the practical approach has traditionally
been discarding the existing classifier and starting from
scratch by combining all data accumulated thus far every

time a new dataset becomes available. This approach results
in loss of all previously learned knowledge, a phenomenon
known as catastrophic forgetting. Furthermore, the combi-
nation of old and new datasets is not even always possible if
previous datasets are lost, discarded, corrupted, inaccessi-
ble, or otherwise unavailable.

Incremental learning of new information without forget-
ting what is previously learned raises the so-called stability
– plasticity dilemma [1]: some information may have to be
lost to learn new information, as learning new patterns will
tend to overwrite formerly acquired knowledge. Thus, a sta-
ble classifier can preserve existing knowledge, but cannot
accommodate new information, whereas a plastic classifier
can learn new information, but cannot retain prior knowl-
edge. The issue at hand is then, if, when and how much
should one be sacrificed for the other to achieve a meaning-
ful balance.

Various definitions and interpretations of incremental
learning can be found in literature. A representative, yet cer-
tainly not exhaustive, list of references can be found in [2].

 For the purposes of this work, an algorithm possesses in-
cremental learning capabilities, if it meets the following cri-
teria: (1) ability to acquire additional knowledge when new
datasets are introduced, without requiring access to previ-
ously seen data; (2) ability to retain a meaningful portion of
the previously learned information; and (3) ability to learn
new classes if introduced by new data.

Algorithms referenced in [2], as well as many others are
all capable of learning new information; though they satisfy
the above-mentioned criteria only at varying degrees: they
either require access to previously seen data, forget substan-
tial amount of prior knowledge along the way, or cannot ac-
commodate new classes. One prominent exception is the
(fuzzy) ARTMAP algorithm [3] along with its many recent
variations. However, it has long been known that ARTMAP
is very sensitive to selection of its vigilance parameter, to
noise levels in the training data and to the order in which the
training data are presented to the algorithm. Furthermore,
the algorithm often suffers from overfitting problems, if the
vigilance parameter is not chosen appropriately. Various
approaches have been and are being suggested to overcome
these difficulties [4, 5, 6, 7, 8].

Recently we have suggested Learn++ as an alternate ap-
proach to the growing list of incremental learning algo-
rithms [2,9]. Learn++, based on the weighted majority vot-
ing of an ensemble of classifiers, satisfies the above men-
tioned criteria. However, the weights for the majority voting
are set during training and remain constant (hence static

0-7803-7898-9/03/$17.00 ©2003 IEEE 2770

weights) after the training. In this paper, we present a modi-
fied version of the algorithm, where voting weights are up-
dated dynamically by estimating which of the classifiers are
likely to correctly classify any given test instance.

B. Ensemble of Classifiers
Learn++ takes advantage of the synergistic power of an

ensemble of classifiers in learning a concept using the divide
and conquer approach. The algorithm is in part inspired by
the AdaBoost (adaptive boosting) algorithm [10], originally
developed to improve the classification performance of weak
classifiers. In essence, an ensemble of weak classifiers are
trained using different distributions of training samples,
whose outputs are then combined using the weighted major-
ity-voting scheme [11] to obtain the final classification rule.
The approach exploits the so-called instability of the weak
classifiers, which allows the classifiers to construct suffi-
ciently different decision boundaries for minor modifications
in their training datasets, causing each classifier to make dif-
ferent errors on any given instance. A strategic combination
of these classifiers then eliminates the individual errors, gen-
erating a strong classifier.

Using ensemble of classifiers has been well researched for
improving classifier accuracy [12, 13, 14, 15, 16]; however,
its potential for addressing the incremental learning problem
has been mostly unexplored. Learn++ was developed in re-
sponse to recognizing the potential feasibility of ensemble of
classifiers in solving the incremental learning problem.

Learn++ was first introduced in [17, 18], as an incremental
learning algorithm for MLP networks. More recently we
showed that Learn++ is actually quite versatile, as it works
with any supervised classification algorithm [9]. In its origi-
nal form, Learn++ combines the classifiers using weighted
majority voting, where the voting weights are determined by
individual performances of the classifiers on their own train-
ing data. We realize that this is sub optimal, as a classifier
that performs well on its own training data need not perform
equally well on data coming from a different portion of the
input space. In this paper, we first introduce the modified
Learn++ algorithm, which uses a statistical-distance-metric
based procedure for estimating which classifiers are likely to
correctly classify a given unknown instance. Higher weights
are then assigned to those classifiers estimated to perform
well on the given instance.

II. LEARN++

Learn++ generates a set of classifiers (hypotheses) and
combines them through weighted majority voting of the
classes predicted by the individual hypotheses. The hypothe-
ses are generated by training a weak classifier, using in-
stances drawn from iteratively updated distributions of the
training database. The distribution update rule used by
Learn++ is designed to accommodate additional datasets, in
particular those that introduce previously unseen classes.
Each classifier is trained using a subset of examples drawn
from a weighted distribution that gives higher weights to ex-

amples misclassified by the previous ensemble. The pseu-
docode of the algorithm is provided in Fig. 1.

For each database Dk, k=1,…,K that becomes available to
the algorithm, the inputs to Learn++ are (1) labeled training
data (){ }kiik miS ,,1|, L== yx where xi and yi are training
instances and their correct classes, respectively ; (2) a weak-
learning algorithm BaseClassifier; and (3) an integer Tk, the
maximum number of classifiers to be generated. For brevity
we drop the subscript k from all other variables. BaseClassi-
fier can be any supervised algorithm that achieves at least
50% correct classification on Sk after being trained on a sub-
set of Sk. This ensures that the classifier is sufficiently weak,
yet strong enough to ensure at least a meaningful classifica-
tion performance. We also note that using weak classifiers
has the additional advantage of rapid training and over-
fitting avoidance, since they only generate a gross approxi-
mation of the underlying decision boundary.

At each iteration t, Learn++ first initializes a distribution
Dt, by normalizing a set of weights, wt, assigned to in-
stances based on their individual classification by the cur-
rent ensemble (step 1)

Dt ∑
=

=
m

i
tt iw

1
)(w . (1)

Learn++ then divides Sk into two mutually exclusive sub-
sets by drawing a training subset TRt and a test subset TEt
according to Dt (step 2). Unless there is prior reason to
choose otherwise, Dt is initially set to be uniform, giving
equal probability to each instance to be selected into TR1.
Learn++ then calls BaseClassifier to generate hypothesis ht
(step 3). The error of ht is computed on by
adding the distribution weights of misclassified instances
(step 4)

[]∑∑
=≠

≠==
k

iit

m

i
iitt

hi
tt hiDiD

1)(:
|)(|)()(yx

yx
ε (2)

where [| • |] is 1 if the predicate is true, and 0 otherwise. If
εt > ½, current ht is discarded and a new ht is generated from
a fresh set of TRt and TEt. If εt < ½, then normalized error βt
is computed as

)1(ttt εεβ −= , 10 << tβ . (3)
All hypotheses generated during the previous t iterations

are then combined using weighted majority voting (step 5),
to construct the composite hypothesis Ht

∑
=∈

=
yxy)(:

1logmaxarg
tht tY

tH
β

. (4)

Ht decides on the winning class that receives the highest
total vote. In the original Learn++ algorithm, the voting
weights were determined based on the normalized errors βt:
hypotheses with lower normalized errors are given larger
weights, so that the classes predicted by a hypothesis with a
proven record are weighted more heavily. The log function
is used to control the explosive effect of very low βt values
associated with classifiers that perform well during training.

U ttk TETRS =

2771

Algorithm Learn++

Input: For each dataset drawn from Dk k=1,2,…,K

• Sequence of mk examples (){ }kiik miS ,,1|, L== yx
• Weak learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations.
Do for each k=1,2,…,K:

Initialize)()(11 iDiw = = miim ,,2,1 , ,1 L=∀

Do for t = 1,2,...,Tk:

1. Set Dt ∑
=

=
m

i
tt iw

1
)(w so that Dt is a distribution.

2. Draw training TRt and testing TEt subsets from Dt.

3. Call BaseClassifier to be trained with TRt.

4. Obtain a hypothesis ht : X Y, and calculate the er-
ror of ∑

≠
=

iithi
tt iDh
yx)(:

t)(: ε on TRt + TEt.

If εt > ½, discard ht and go to step 2. Otherwise, com-
pute normalized error as βt=εt / (1-εt).

5. Call dynamically weighted majority voting to obtain
composite hypothesis ∑

=∈
=

yxy)(:
)(maxarg

tht
t

Y
t xDWH

6. Compute the error of the composite hypothesis

 []∑∑
=≠

≠==
k

iit

m

i
iitt

Hi
tt HiDiDE

1)(:
|)(|)()(yx

yx

7. Set Bt = Et/(1-Et), and update the weights:

[]|)(|1)(

 , 1
)(,

)()(1

iitt

tt

H
t

iitt

Biw

otherwise
H ifB

iwiw

yx

yx

≠−×=



 =

×=+

Call Dynamically weighted majority voting and
 Output the final hypothesis:

 ∑ ∑
= =∈

=
K

k ht
t

Y
final

t

DWH
1)(:

)(maxarg)(
yxy

xx

Fig 1. Algorithm Learn++

While this rule makes intuitive sense, and in fact per-
formed remarkably well in a number of simulations [9], it is
nevertheless sub optimal. This is because the weights are
determined – and fixed prior to testing – based on individual
performances of hypotheses on their own training data sub-
set. A rule that dynamically estimates which hypotheses are
likely to correctly classify an unlabeled instance, to give
higher voting weights to those hypotheses would be more op-
timal. We therefore change the composite hypothesis ex-
pression as

∑
=∈

=
yxy

x
)(:

)(maxarg
tht

t
Y

t DWH (5)

where DWt(x) is the instance-specific dynamic weight as-
signed to instance x by the hypothesis ht. Dynamic weights
are determined using a Mahalanobis-distance-based esti-
mated likelihood of ht for correctly classifying x, as de-
scribed below.

The composite error Et made by Ht is then computed as
the sum of distribution weights of instances misclassified by
Ht (step 6)

[]∑∑
=≠

≠==
k

iit

m

i
iitt

Hi
tt HiDiDE

1)(:
|)(|)()(yx

yx
. (6)

The composite normalized error is similarly computed as
ttt EEB −= 1 , 10 << tB . (7)

The weights wt(i) are then updated, for computing the
next distribution Dt+1, which in turn is used in selecting the
next training and testing subsets, TRt+1 and TEt+1, respec-
tively (step 7)

[]|)(|1)(

 , 1
)(,

)()(1

iitt

tt

H
t

iitt

Biw

otherwise
H ifB

iwiw

yx

yx

≠−×=



 =

×=+
. (8)

This rule reduces the weights of those instances correctly
classified by the composite hypothesis Ht by a factor of Bt
(since 0 < Bt < 1), whereas it leaves the weights of misclas-
sified instances unchanged. After normalization (in step 1 of
iteration t+1), the probability of correctly classified in-
stances being chosen into TRt+1 is reduced, while those of
misclassified ones are effectively increased. Therefore, the
algorithm focuses on instances that are difficult to classify,
or instances that have not yet been properly learned. This
approach allows incremental learning by concentrating on
newly introduced instances, particularly those coming from
previously unseen classes, as these are precisely those in-
stances that have not been learned yet.

We emphasize the introduction of the composite hypothe-
sis Ht by Learn++, which along with the weight update rule,
uniquely allows Learn++ to learn new classes. It is empiri-
cally observed that the procedure fails to learn new classes,
if instead the weight update rule were based on the perform-
ance of ht only (as AdaBoost does). The weight update rule
based on composite hypothesis performance allows
Learn++ to focus on those instances that have not been
learned by the current ensemble, rather then the previous
hypothesis.

After Tk hypotheses are generated for each database Dk,
the final hypothesis Hfinal is obtained by combining all hy-
potheses that have been generated thus far using the dy-
namically weighted majority-voting rule choosing the class
that receives the highest total vote among all classifiers,

∑ ∑
= =∈

=
K

k ht
t

Y
final

t

DWH
1)(:

)(maxarg)(
yxy

xx . (9)

2772

To determine the dynamic voting weights, we use the Ma-
halanobis distance, to compute the distance of the unknown
instance to the datasets used to train individual classifiers.
Classifiers trained with datasets closer to the unknown in-
stance are then given larger weights. Note that this approach
does not require the training data to be saved, but only the
mean and covariance matrices, which are typically much
smaller than the original data. In Learn++, we first define
TRtc as a subset of TRt, the training data used during the tth it-
eration, where TRtc includes only those instances of TRt that
belong to class c, that is,

{ }cTRTR itiitc =∈= yxx &| ∋ U
C

c
tct TRTR

1=
= (10)

where C is the total number of classes. The class specific
Mahalanobis distance from an unknown instance x to TRtc, is
then computed as

())()(1
tctc

T
tctc xM mxCmx −−= − , Cc ,,2,1 L= (11)

where mtc is the mean and Ctc is the covariance matrix of
TRtc. For any instance x, the Mahalanobis distance based dy-
namic weight of the tth hypothesis can then be obtained as

()()x
x

tc
t M

DW
min

1)(= , Cc ,,2,1 L= . Tt ,,1L= (12)

where T is the total number of hypotheses generated.
The Mahalanobis distance metric implicitly assumes that

the data is drawn from a Gaussian distribution, which in gen-
eral is not the case. However, this metric provided promising
results demonstrating its effectiveness. Other distance met-
rics that do not make this assumption will also be evaluated.

III. LEARN++ SIMULATION RESULTS

The original Learn++ algorithm using the static weighted
majority voting has been tested on a number of benchmark
and other real world databases, whose results are provided in
[2,9]. In this paper, we present simulation results of using
Learn++ with dynamically updated weighted majority voting
on two real-world incremental learning problems that intro-
duce new classes with additional data.

A. Ultrasonic Weld Inspection (UWI) Database
This rather challenging database was obtained by ultra-

sonic scanning of welding regions of various stainless or car-
bon steel structures. The welding regions, known as heat-
affected zones, are highly susceptible to growing a variety of
defects, including potentially dangerous cracks. The discon-
tinuities within the material, such as the air gaps due to
cracks, cause the ultrasonic wave to be reflected back and re-
ceived by the transducer. The reflected ultrasonic wave, also
called the A-scan, serves as the signature pattern of the dis-
continuity, which is then analyzed to determine its type. This
analysis, however, is hampered by the presence of other
types of discontinuities, such as porosity (POR), slag and
lack of fusion (LOF), all of which generate very similar A-
scans, creating highly overlapping patterns in the feature
space. Representative A-scans are shown in Fig.2

Fig. 2 Representative normalized A-scans of (a) crack,

(b) Lack of fusion, (c) slag, (d) porosity

This four-class database was divided into three training
datasets, S1 ~ S3, and a validation set, TEST. Table 1 pre-
sents the data distribution in each dataset. We note that each
additional database introduced a new class: in particular, S1
had instances only from crack and LOF, S2 introduced slag
instances and S3 introduced porosity instances. TEST dataset
included instances from all classes.

Only Sk was used during the kth training session TSk.
Therefore, previously used data were not made available to
Learn++ in future training sessions. Table 2 summarizes the
training and generalization performances of the algorithm
after each training session. The classification performances
on training and testing datasets are shown in rows labeled
by S1, S2, S3, and TEST as obtained after each training ses-
sion, TSk. The numbers in parentheses indicate the number
of weak classifiers generated in each training session. Clas-
sifier generation continued until the generalization perform-
ance on the TEST dataset, shown in the last row, reached a
steady saturation value. The weak learner used to generate
individual hypotheses was a single hidden layer MLP with
50 hidden layer nodes. The mean square error goals of all
MLPs were preset to a value of 0.02 to prevent over-fitting
and to ensure sufficiently weak learning. We note that any
neural network can be turned into a weak learning algorithm
by selecting its number of hidden layers and the number of
hidden layer nodes small, and the error goal high, with re-
spect to the complexity of the problem.

2773

TABLE 1. DATA DISTRIBUTION FOR THE UWI DATABASE
↓Dataset LOF SLAG CRACK POR

S1 300 300 0 0
S2 150 300 150 0
S3 200 250 250 300

TEST 300 300 200 100

TABLE 2. LEARN++ PERFORMANCE ON THE UWI DATABASE
 ↓ Dataset TS1 (8) TS2 (27) TS3 (43)

S1 99.2% 89.2% 88.2%
S2 --- 86.5% 88.1%
S3 --- --- 96.4%

TEST 57.0% 70.5% 83.8%

Several observations can be made from Table 2:
(i) The generalization performances on TEST dataset

steadily increase, indicating that Learn++ is indeed able to
learn new information, as well as new classes as they become
available;

(ii) In general, larger numbers of classifiers are required
for incremental learning of new classes.

(iii) There is an occasional decline on training data per-
formances indicating some loss, albeit minor, of previously
acquired knowledge as new information is acquired. This is
expected due to stability-plasticity dilemma;

(iv) Near 50% generalization performance after TS1 makes
intuitive sense, since at that time the algorithm had only seen
two of the four classes that appear in the TEST data. The per-
formance gradually increases proportional to the ratio of the
classes seen, as they become available.

As a performance comparison, the same database was also
used to train and test a single strong learner, a 149x40x12x4
two hidden layer MLP with an error goal of 0.001. The best
test data classification performance of the strong learner has
been around 75%, despite the fact that the strong learner was
trained with instances from all classes.

B. Volatile Organic Compound (VOC)Database
This database was obtained from responses of six quartz

crystal microbalances (QCMs) to various concentrations of
five volatile organic compounds (VOCs), including ethanol
(ET), xylene (XL), octane (OC), toluene (TL), and trichloro-
ethelene (TCE). When QCMs are exposed to VOCs, the mo-
lecular mass deposited on their crystal surface alters their
resonant frequency, which can be measured using a fre-
quency counter or a network analyzer. By using an array of
QCMs, each coated with a different polymer sensitive to spe-
cific VOCs, the collective response of the array can be used
as a signature pattern of the VOC. However, QCMs have
very limited selectivity, making the identification a challeng-
ing task. Representative patters of sensor responses for each
VOC are shown in Fig. 3.

Similar to the UWI database, the VOC identification data-
base was divided into three training datasets S1 ~ S3 and one
validation dataset, TEST. The data distribution is shown in
Table 3, which was specifically biased towards the new class:
database S1 had instances from ET, OC and TL, S2 added in-
stances mainly from TCE (and very few from the previous

three), and S3 added instances from XL (and very few from
the previous four). TEST set included instances from all
classes. The base classifier used for this database was also a
MLP type neural network with a 6x30x5 architecture, and
an error goal of 0.05. Table 4 presents the training and gen-
eralization performances of the algorithm on this database.

1 2 3 4 5 6
0

0 .2

0 .4

0 .6

0 .8

1
E t h a n o l

1 2 3 4 5 6 0

0 .2

0 .4

0 .6

0 .8

1
T o lu e n e

1 2 3 4 5 6
0

0 .2

0 .4

0 .6

0 .8

1 X y le n e

1 2 3 4 5 6 0

0 .2

0 .4

0 .6

0 .8

1 T C E

1 2 3 4 5 6
0

0 .2

0 .4

0 .6

0 .8

1 O c ta n e

Fig. 3 Representative QCM sensor responses to five VOCs

TABLE 3.DATA DISTRIBUTION FOR THE VOC DATABASE
 ↓Dataset ET OC TL TCE XL

S1 20 20 40 0 0
S2 10 10 10 25 0
S3 10 10 10 15 40

TEST 24 24 52 24 40

TABLE 4. LEARN++ PERFORMANCE ON THE VOC DATABASE
↓Dataset TS1 (7) TS2 (10) TS3 (16)

S1 100% 97.5% 92.5%
S2 --- 96.4% 96.4%
S3 --- --- 92.9%

TEST 57.3% 67.1% 89.6%

Performance figures listed above follow a similar trend to
those of the UWI database. The steady increase on the gen-
eralization performance indicates that Learn++ was able to
incrementally learn additional information provided by the
new classes.

 We have evaluated Learn++ numerous times for each da-
tabase with slightly different algorithm parameters, such as
the order of introduction of the classes, base classifier archi-
tecture and/or error goal, the percentage of training data
used as training and testing subsets, etc. and even to a great
extend the choice of base classifier. In all cases, the algo-
rithm seemed to be remarkably resistant to such changes.

IV. DISCUSSIONS & CONCLUSIONS
In this paper, we introduced a new version of the Learn++

algorithm. Learn++ essentially adds the incremental learn-

2774

ing capability to any supervised neural network that normally
does not possess this property. As demonstrated by the re-
sults presented in this and our previous papers, Learn++ is
indeed able to learn new information provided by additional
databases, even when the new classes are introduced by the
consecutive datasets. Learn++ takes advantage of the syner-
gistic expressive power of an ensemble of weak classifiers,
where each classifier is trained with a training data subset
drawn from a strategically updated distribution of the training
data. Individual classifiers are then combined using the
weighted majority-voting rule to obtain the final classifier. In
this paper, we proposed an alternate weighted majority vot-
ing strategy, where the voting weights are determined dy-
namically for each instance, based on the estimated likeli-
hood of the hypotheses to correctly classify that instance. The
intuitive idea behind this approach is that those classifiers
trained with a dataset that included nearby instances– in the
Mahalanobis distance sense – to the unknown instance are
more likely to correctly classify the unknown instance.

It can be argued that the classification decision is already
being made by the choice of the class providing the minimum
Mahalanobis distance, since if instance x belongs to a par-
ticular class, and instances from that class have been used in
the current dataset, then the Mahalanobis distance between x
and TRtc is likely to be minimum among all others. This is
indeed true for datasets with non-overlapping classes with
noise-free well-behaving distributions. In practice, however,
this is rarely the case, and a decision based on the Mahalano-
bis distance only invariably achieves poor classification per-
formances on challenging datasets, such as the UWI and
VOC datasets. We emphasize that the Mahalanobis distance
is not used directly for making a classification decision, but
rather to assign a weight to competing hypotheses.

Through out the simulations, a number of additional ob-
servations were made, not readily apparent from the tables.
In particular, we have tested the sensitivity of Learn++ to the
order of presentation of the data, as well as to minor changes
in its parameters. We found out that the classification per-
formance of Learn++ was virtually the same, regardless of
the order in which databases (and therefore the classes) were
presented to the algorithm. Furthermore, the algorithm was
considerably robust to changes in its internal parameters,
such as the network size, error goal, the number of hypothe-
ses generated, and even the type of base classifier.

Finally, unlike most other supervised classifiers, Learn++
does not suffer from catastrophic forgetting, since previously
generated classifiers are retained. Due to the stability – plas-
ticity dilemma, some knowledge is indeed forgotten while
new information is being learned; however, this appears to be
insignificant, as indicated by the steady improvement in the
generalization performance.

One might also wonder what generalization performance
could be achieved if the entire database were available for
strong learning. Training a strong classifier using the entire
training database, we obtain performances in the mid 70% to
high 80% range, similar to, or even slightly worse than those

of Learn++. This rather satisfying result further indicates the
feasibility of Learn++ as an alternative to other incremental
learning algorithms, as well as to non-incremental strong
classifiers.

ACKNOWLEDGEMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. ECS-0239090.
REFERENCES

[1] S. Grossberg, “Nonlinear neural networks: principles, mechanisms and

architectures,” Neural Networks, vol. 1, no. 1, pp. 17-61, 1988.
[2] R. Polikar, L. Udpa L, S. Udpa, and V. Honavar, “Learn++: An incre-

mental learning algorithm for supervised neural networks,” IEEE
Transactions on System, Man and Cybernetics (C), Special Issue on
Knowledge Management, vol. 31, no. 4, pp. 497-508, 2001.

[3] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incre-
mental supervised learning of analog multidimensional maps,” IEEE
Trans. on Neural Networks, vol. 3, no. 5, pp. 698-713, 1992.

[4] J.R. Williamson, “Gaussian ARTMAP: a neural network for fast incre-
mental learning of noisy multidimensional maps,” Neural Networks,
vol. 9, no. 5, pp. 881-897, 1996.

[5] C.P. Lim and R.F. Harrison, “An incremental adaptive network for on-
line supervised learning and probability estimation,” Neural Networks,
vol. 10, no. 5, pp. 925-939, 1997.

[6] F. H. Hamker, “Life-long learning cell structures – continuously learn-
ing without catastrophic interference,” Neural Networks, vol. 14, no. 4-
5, pp. 551-573, 2000.

[7] G.C. Anagnostopoulos and M. Georgiopoulos, “Ellipsoid ART and
ARTMAP for incremental clustering and classification,” Int. Joint
Conf. on Neural Networks (IJCNN 2001), vol. 2, pp. 1221-1226, 2001.

[8] E. Gomez-Sanchez, Y.A. Dimitriadis, J.M. Cano-Izquierdo, J. Lopez-
Coronado, Safe-µARTMAP: A new solution for reducing category
proliferation in Fuzzy ARTMAP, Proc. of Int. Joint Conf. on Neural
Networks (IJCNN 2001), vol.2, pp. 1197-1202, 2001.

[9] R. Polikar, J. Byorick, S. Krause, A. Marino, and M. Moreton,
“Learn++: A classifier independent incremental learning algorithm for
supervised neural networks,” Proc. of Int. Joint Conference on Neural
Networks (IJCNN 2002), vol.2, pp. 1742-1747, Honolulu, HI, 2002.

[10] Y. Freund and R. Schapire, “A decision theoretic generalization of on-
line learning and an application to boosting,” Computer and System
Sciences, vol. 57, no. 1, pp. 119-139, 1997.

[11] N. Littlestone and M. Warmuth, “Weighted majority algorithm, ” In-
formation and Computation, vol. 108, pp. 212-261, 1994.

[12]L.K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993-1001, 1990.

[13] M.I. Jordan and R.A. Jacobs, “ Hierarchical mixtures of experts and
the EM algorithm,” Proc. of Int. Joint Conf. on Neural Networks
(IJCNN 1993), pp. 1339-1344, 1993.

[14] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining classifiers,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20,
no.3, pp. 226-239, 1998.

[15] T.G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting and ran-
domization,” Machine Learning, vol. 40, no. 2, pp. 1-19, 2000.

[16] L.I. Kuncheva, “A theoretical study on six classifier fusion starategies,
“ IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 2, pp. 281-286, 2002.

[17] R. Polikar, “Algorithms for enhancing pattern separability, feature se-
lection and incremental learning with applications to gas sensing elec-
tronic nose systems,” Ph.D. dissertation, Iowa State University, Ames,
IA, 2000.

[18] R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An incremental
learning algorithm for multilayer neural networks,” Proc. of IEEE Int.
Conf. on Acoustics, Speech and Signal Proc., vol. 6, pp. 3414-3417,
2000.

2775

	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	IJCNN CD-ROM Help
