
An Ensemble of Classifiers Approach
for the Missing Feature Problem

Stefan Krause and Robi Polikar

Electrical and Computer Engineering, Rowan University,
136 Rowan Hall, Glassboro, NJ 08028, USA.

Abstract – A new learning algorithm is introduced that can

accommodate data with missing features. The algorithm uses
an ensemble of classifiers approach. The classifiers in the en-
semble are trained with random subsets of the total number of
available features. The approach takes advantage of the basic
assumption that an unknown subset of the features is in fact
adequate for the classification, or in other words, that are re-
dundant, and possibly irrelevant features in the data. This as-
sumption is in general true for most practical applications. We
empirically show that if a certain number of networks produce
a particular classification performance using all of the features,
then the same classification performance can be reached even if
some features are missing, as long as the same number of use-
able networks can be generated with the missing features. The
proposed approach has its roots in the incremental learning al-
gorithm, Learn++ which seeks to learn new information that is
provided by additional datasets that may later become avail-
able, even when such data introduce new classes. We have
modified the Learn++ algorithm for addressing the missing fea-
ture problem. The proposed algorithm showed surprisingly
remarkable performance on three real-world applications, with
up to 10% of the features missing in the validation / field data.

I. INTRODUCTION

A. The Missing Feature Problem
Most commonly used classification algorithms, including

neural networks, require that the number and nature of the
features be set before the training. Once the training is com-
pleted, the validation or the field data must contain the exact
same features as the training data for the classification algo-
rithm to determine the corresponding classes. If a particular
instance is missing even a single feature, the classifier will
not be able to produce a valid output for that input. It is not
unusual for training, validation or field data to have missing
features in some (or even all) of their instances, as bad sen-
sors, failed pixels, malfunctioning equipment, unexpected
noise causing signal saturation, data corruption, etc. are fa-
miliar scenarios in many practical applications. The prag-
matic approach that is often followed in such cases is simply
ignoring those instances with missing features. This rather
brute-force approach is suboptimal, however, and may not
even be feasible if all instances are missing one or more fea-
tures. There are other theoretical approaches, many of which
rely on Bayesian techniques for extracting class probabilities
from partial data, by integrating over missing portions of the
feature space [1,2,3,4]. Another approach is searching for
the optimal subset of features so that fewer features are re-
quired; however, the problem still remains if one (or more)

of these optimal features is missing, corrupted or unavail-
able otherwise.

The proposed algorithm, named Learn++MF, follows an
alternate strategy, combining an ensemble of classifiers ap-
proach with random feature selection. Basically, the idea is
to train an ensemble of classifiers, each trained with a ran-
domly selected subset of the features. When an instance
with missing feature(s) needs to be classified, those classifi-
ers trained with only those features that are presently avail-
able in the given instance are used to determine the correct
classification. These classifiers are henceforth referred to as
usable classifiers. This approach makes two basic assump-
tions: First, the feature set is redundant, and hence includes
an unknown number of features that are actually not re-
quired, or even possibly irrelevant. Second, the features are
assumed to be unrelated and/or independent (the value of
any feature is independent of all others). While these as-
sumptions are clearly not satisfied in all classification prob-
lems, they actually hold true in many practical applications.
This is because, most practical applications, knowingly or
otherwise, do use a redundant set of features that are in fact
independent from each other. It is these applications for
which the proposed approach is designed.

B. Ensemble of Classifiers
The predecessor of the proposed algorithm is the previ-

ously presented incremental learning algorithm, Learn++
[5,6,7]. Learn++ generates an ensemble of weak classifiers,
each trained with a slightly different distribution of the
training data, which are then combined using the weighted
majority voting [8]. Learn++, similar to other ensemble ap-
proaches, takes advantage of the instability of weak classifi-
ers, which allows the classifiers to construct sufficiently dif-
ferent decision boundaries for minor modifications in their
training parameters, causing each classifier to make differ-
ent errors on any given instance. A strategic combination of
these classifiers then eliminates the individual errors, gener-
ating a strong classifier.

Using ensemble of classifiers has been well researched
for improving classifier accuracy [9,10,11,12,13,14]; how-
ever, its potential for addressing the missing feature prob-
lem, as well as the incremental learning problem has been
mostly unexplored. Learn++ was developed in response to
recognizing the potential feasibility of ensemble of classifi-
ers in solving the incremental learning problem, whereas
Learn++MF is designed to explore the feasibility of using

0-7803-7898-9/03/$17.00 ©2003 IEEE 553

the ensemble of classifiers approach for solving the missing
feature problem.

Using the ensemble of weak classifiers approach has ad-
ditional benefits. First, the training time is often less for
generating multiple weak classifiers compared to training
one strong classifier. This is because, strong classifiers
spend a majority of their training time in fine tuning the de-
sired decision boundary, whereas weak classifiers com-
pletely skip the fine-tuning stage as they only generate a
rough approximation of the decision boundary. Intimately
related to fast training, weak classifiers are also less likely to
suffer from overfitting problems, since they avoid learning
outliers, or quite possibly a noisy decision boundary.

Since the ensemble of classifiers is combined through a
majority voting process, each classifier can be trained using
a different set of features. By creating an ensemble with
various subsets of the features used to train each classifier, a
subset of the classifiers can still be used when a particular
instance is missing certain features. This is because an in-
stance missing certain features can be classified by those
classifiers that did not use the missing features for training.

II. THE LEARN++MF ALGORITHM

As mentioned above, the Learn++MF algorithm uses an
ensemble of classifiers, each of which is trained with a ran-
dom subset of the entire feature set. While not essential to
the algorithm, we initially assume that the training data has
no missing features, and/or there is sufficient training data
with all features intact. The algorithm focuses on the more
commonly seen, and potentially more annoying case of,
field data containing missing features. The algorithm gener-
ates a number of classifiers each of which requires only a
subset of all features. Hence, when an instance with missing
features needs to be identified, only those classifiers that did
not use the missing features in their own training data are
used for classification. All other classifiers that were trained
with one or more of the missing features of the given in-
stance are simply disregarded for the purpose of classifying
the current instance.

In order to keep track of which classifiers are used in
classifying any given instance, we define the universal set
and usable set of classifiers. The universal set of classifiers
includes all classifiers that have been generated by the algo-
rithm thus far. The usable set of classifiers is the instance
specific set of actual classifiers that can be used in identify-
ing the given instance. Similarly, we can also define the set
of unusable classifiers, which for any given instance, are
those classifiers that require the features missing in the
given instance. We show empirically that if U classifiers
yield a certain classification performance on data with no
missing features, then a similar performance can be
achieved simply by generating additional weak classifiers to
obtain a total of U usable classifiers on data that have miss-
ing features. The assumptions for this property to hold are
the availability of a dataset with sufficient redundancy, and a

set of weak classifiers each of which is trained with slightly
different parameters.

The pseudocode and the block diagram of the Learn++MF
algorithm are provided in Fig.1 and Fig. 2, respectively. The
inputs to the algorithm are (1) the training data set D; (2)
the percentage of features pof to be used for training indi-
vidual classifiers; (3) the number of classifiers to be created
T; and (4) the sentinel value sen used in the data to desig-
nate a missing feature. The data set D contains m number of
instances, each with a total of f number of features. The al-
gorithm is set to iteratively run T times, generating one ad-
ditional classifier (hypothesis) at each iteration. A discrete
probability distribution Pt is created, essentially giving a
weight to each feature. At each iteration t, a subset of fea-
tures, Fselection(t), is drawn according to this distribution such
that those features with higher weights are more likely to be
selected into Fselection(t) to be used in training current itera-
tion’s classifier, ht. Before the first iteration, P1 is initialized
to be uniform, unless there is reason to choose otherwise, so
that each feature has equal likelihood of being selected into
Fselection(1).

Training

Input:
• Sentinel value sen.
• Integer T, specifying the number of iterations.
• Training data set (){ }miD ii ,,1|, L== yx with m in-

stances and f features.
• Percentage of features used to train each classifier pof.

Initialize fjjfjP ,,1,,/1)(1 L=∀=
Do for t = 1,2,...,T:

1. Set ∑
=

=
f

j
ttt jPPP

1
)(so that Pt is a distribution.

2. Draw pof% of features for Fselection(t) from Pt.
3. Generate a weak classifier using only those features

in Fselection(t) for each instance in training.
4. Obtain a hypothesis ht : X Y, and calculate the

classification performance Perft for ht. If Perft < 50
%, discard ht and go to step 2.

5. Set
f

tFPtFP selectiontselectiont
1))(())((⋅=

(Validation / Testing)
Do for i = 1,2,...,m:

6. Mfeat (i) = ()senji ==)(arg x , fjj ,,1, L=∀ .
7. ∑

==∈
∉=

yxht
selectionfeat

Yy
t

t

tFiMH
)(

|])()([|maxarg .

end loop
end loop

Hfinal = Ht

Fig. 1 Learn++MF algorithm.

554

This distribution, which is updated later in the algorithm,
is normalized in step 1 of the iterative loop, so that its sum is
equal to 1, and that a legitimate distribution Pt is obtained

∑
=

=
f

j
ttt jPPP

1
)((1)

where j is an index on features. Next, pof % of the features
are randomly drawn from Pt in step 2. The features selected
constitute the set Fselection(t). We note that the pof value
should be selected carefully. A high pof value will yield bet-
ter individual classifiers because each classifier will be
trained with more features. However, fewer classifiers will
then be available to classify instances with missing features.
Conversely, a very low pof value will cause the classifiers to
be too weak to achieve a meaningful classification perform-
ance. Experimental trials have shown that a typical pof value
should be between 15-40% (of f, the total number of fea-
tures), depending on the redundancy of the features and/or
complexity of the classification problem. Once Fselection(t) is
obtained, the tth hypothesis ht is generated in step 3 using the
features in Fselection(t). The trained classifier ht is then tested
on the training data in step 4. We expect that ht achieve a
minimum of 50% correct classification performance on its
training data to ensure that it has a meaningful classification
capacity. If this requirement is not satisfied by ht, then a new
Fselection(t) is drawn and a new classifier is generated.

Next, the distribution Pt is updated in step 5 according to

f
tFPtFP selectiontselectiont

1))(())((⋅= (2)

such that the weights of those features that appear in Fselec-

tion(t) are reduced by a factor of f. Those features that were
not in the current selection effectively have their weights in-
creased when Pt is normalized again in step 1 of iteration
t+1. This feature weight update rule ensures that every fea-
ture has an equal probability of being selected, by reducing
the weights of those that have been previously selected.

During the validation phase, the algorithm searches for
sentinels in each instance to be classified. Therefore, the
values for the missing features must have been replaced with
the sentinel, sen, before validation. The sentinel value
should be chosen so that it is greatly out of the range of val-
ues that could conceivably occur in the data. This will en-
sure that actual values are not mistaken for the sentinel
value. Therefore all features j, j=1,…,f with a sentinel value
in the given instance are flagged and placed into the set of
missing features Mfeat(i) for that instance xi. Finally, all clas-
sifiers ht whose feature selection list Fselection(t) did not in-
clude those in Mfeat(i) (that is, all classifiers that did not use
any of the features in Mfeat(i)) are combined through major-
ity voting to determine the classification of instance xi. This
constitutes the composite hypothesis Ht(i) for that instance:

∑
==∈

∉=
yxht

selectionfeat
Yy

t
t

tFiMiH
)(

|])()([|maxarg)((3)

Draw pof features
for Fselection(t) from Pt 2

Generate ht:X Y using Fselection(t)
3

Perft > 50%

t < T Hfinal = Ht
N

Y

Final Classification

Evaluate ht on D Perft 4

N

B
as

e
 C

la
ss

ifi
er

Training
data D

Number of
iterations T

% of features
to be used, pof

1=tInputs at

Normalize feature dist Pt 1

5
Update distribution for Pt+1

Determine missing features
for each instance Mfeat(i) 6

t =
 t

+
1

Y

Sentinel
value sen

Combine ht for which Mfeat(i) Fselection(t)
using majority voting Ht 7

∉

Fig. 2. Block diagram of the Learn++MF algorithm

where [| • |] evaluates to 1 if the predicate holds true. Equa-
tion (3) essentially picks the class that receives the highest
vote among all classifiers.

After T classifiers are generated, the current composite
hypothesis becomes the final hypothesis. T should be cho-
sen large enough to create adequate number of usable clas-
sifiers for the problem at hand.

III. SIMULATION RESULTS

The algorithm was tested on a variety of databases. In
each case different percentages of features (the pof parame-
ter) were used for training. The databases used included a
gas identification database, an optical character recognition
database, and a database classifying radar returns through
the ionosphere. In all cases, multi-layer perceptron (MLP)
networks were used as the base classifier. Since MLPs in

555

the ensemble were trained as weak classifiers, training pa-
rameters, such as the error goal or number of hidden layer
nodes did not need fine tuning.

A. Gas Identification (GI) Database
The gas identification database used in this study con-

sisted of responses of six quartz crystal microbalances to
five volatile organic compounds, including ethanol (ET), xy-
lene (XL), octane (OC), toluene (TL), and trichloroethelene
(TCE). The database included 384 six-dimensional signals.
180 were used for training and 204 were used for testing.
The data distribution is shown in Table 1. Each network in
the ensemble was trained with 2 out of 6, (pof = 33.3%), of
the available attributes. We found that 50 usable networks
would yield a classification performance of 81.4% when no
features were missing. Additional networks were created to
ensure that there would still be 50 usable networks with as
many as 10% of the features missing in the test data. The
ensemble was tested with five sets of test data. Each had a
different percentage of features randomly replaced with sen-
tinels to simulate missing features. We note that the total
number of features in the dataset is defined as the number of
features per instance times the number of instances. The
percentages of features removed represent the fraction of to-
tal number of features that were removed. Five datasets were
created for this database with 0.0%, 2.5%, 5.0%, 7.5%, and
10.0% of the features removed. The classification perform-
ances are given in Table 2.

TABLE 1.DATA DISTRIBUTION FOR THE GI DATABASE
 Training Data Test Data
ET 30 34
OC 30 34
TL 50 62
TCE 30 34
XL 40 40
Total 180 204

TABLE 2.PERFORMANCE ON THE GI DATABASE
% Features

Missing
Total # of
Classifiers

of Usable
Classifiers

Test
Perform.

0.0% 50 50 81.4%
2.5% 53 50 81.4%
5.0% 56 50 81.4%
7.5% 59 50 81.4%

10.0% 62 50 81.4%

Intuitively, the best generalization performance was ex-
pected from the set with no features missing, with decreas-
ing performances on the sets that had increasing number of
missing features. However, we found out that when 50 us-
able networks were available for each set, the generalization
performances were identical. As expected, a larger (62)
number of networks was required when 10% of features
were missing, to obtain 50 usable networks, as compared to
other sets.

B. Optical Character Recognition (OCR) Database
This benchmark database, obtained from the UCI ma-

chine learning repository [15], consisted of 1200 training in-

stances and 1797 test instances of digitized hand written
characters. The data distribution is shown in Table 3. The
characters were digits, 0 through 9, digitized on an 8x8 grid,
creating 64 features for 10 classes (two pixels had constant
zero values throughout the entire data, and hence were re-
moved, leaving effectively 62 features). Twelve out of 62,
(pof = 19.3%), features were used for training individual
classifiers. For this database, 59 networks achieved a per-
formance of 94.5% on the test data with no missing fea-
tures. The previously described process of randomly remov-
ing features was also repeated for this database. The classi-
fication performance values are given in Table 4.

TABLE 3. DATA DISTRIBUTION FOR THE OCR DATABASE
 Training Data Test Data

0 100 178
1 150 182
2 100 177
3 150 183
4 100 181
5 150 182
6 100 181
7 150 179
8 100 174
9 100 180

Total 1200 1797

TABLE 4. PERFORMANCE ON THE OCR DATABASE
% Features

Missing
Total # of
Classifiers

of Usable
Classifiers

Test
Perform.

0.0% 59 59 94.5%
2.5% 80 59 94.5%
5.0% 110 59 95.0%
7.5% 149 59 92.2%
10.0% 210 59 93.7%

This case did not yield the exact same performance val-
ues when features were missing, unlike the GI database. It
did, however, have very consistent performances all within
2% of each other. Interestingly, having no features missing
does not always guarantee the highest performance. In this
case the dataset with 10.0% of the features removed did bet-
ter than the dataset with 7.5% of the features removed. In
fact the dataset with 5.0% features removed performed even
better than the dataset with all features present. This can be
explained by the presence of irrelevant features whose mere
existence may hinder the classification performance [16]. In
such cases, a large number of networks are needed to pro-
vide the equivalent number of usable networks, e.g., when
10.0% of features were missing, three times as many (210)
networks were required to achieve 59 usable networks.

The performance relationship between the total number
of classifiers versus usable classifiers illustrates an interest-
ing relationship, as shown in Figs. 3 and 4. The y-axis in
each figure is classification performance. The x-axis in Fig.
3 is the total number of classifiers and the x-axis in Fig. 4 is
the number of usable networks. In both cases the bold line
is the no-missing-features case, plotted as a solid line with
X’s through it. We note the obvious outcome that it takes
longer for those classifiers trained with larger percentage of

556

features missing to achieve a desired performance figure.
However, plotting performance versus number of usable net-
works, we notice that all plots move right on top of each
other (Fig.4). This illustrates that, at least for databases with
sufficient redundancy, a large number of features may be
missing without affecting the classification performance,
when the described ensemble approach is used.

Fig. 3 Performance vs. actual networks on the OCR database

Fig. 4 Performance vs. usable networks on the OCR database

The vertical lines in Fig.4 indicate the end of the plot (#
of classifiers generated) for each dataset.

C. Ionosphere Radar Return (ION) Database
This benchmark database, also obtained from the UCI

machine learning repository [15], consisted of 220 training
instances and 131 test instances of radar returns through the
ionosphere. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on
the order of 6.4 kW. The targets were free electrons in the
ionosphere. "Good" radar returns are those showing evi-
dence of some type of structure in the ionosphere. "Bad" re-
turns are those that do not; whose signals pass through the

ionosphere. The data distribution is shown in Table 5. Nine
out of 34, (pof = 26.5%), of the available features were used
for training individual classifiers. For this database, 53 us-
able networks achieved a performance of 94.7% on the test
data when no features were missing. The same process of
randomly removing features that was performed on the pre-
vious two databases for testing was also repeated here. The
classification performance values are given in Table 6.

TABLE 5. DATA DISTRIBUTION FOR THE ION DATABASE
 Training Data Test Data

Good 140 85
Bad 80 46

Total 220 131

TABLE 6. PERFORMANCE ON THE ION DATABASE
% Features

Missing
Total # of
Classifiers

of Usable
Classifiers

Test
Perform.

0.0% 53 53 94.7%
2.5% 67 53 94.7%
5.0% 85 53 94.7%
7.5% 106 53 93.9%
10.0% 142 53 95.4%

This database also produced very consistent classification
performances. There was a very slight drop off in perform-
ance for the dataset with 7.5% of the features missing.
However, there was actually about a one percent increase in
performance for the dataset with 10.0% of the features
missing as compared to the other three datasets.

One might also wonder, what generalization performance
could be achieved, if the entire set of features were made
available to the algorithm (as opposed to pof%). This would
constitute the gold standard to compare the classifier per-
formances with missing features.

TABLE 7. PERFORMANCE ON THE ION DATABASE WITH
ALL FEATURES USED

% Features
Missing

Total # of
Classifiers

of Usable
Classifiers

Test
Perform.

0.0% 34 34 94.7 %

As indicated in Table 7, when all 34 features were used
during training, the classification performance was virtually
identical to the case where only a random 9 out of the 34
features were used, though only 34 (weak) classifiers were
required to achieve this performance as opposed to 53. We
also note that the equivalence of the number of classifiers
used by the algorithm and the number of features (34) is
purely coincidental.

IV. DISCUSSIONS & CONCLUSIONS

We presented the Learn++MF algorithm, employing an
ensemble of classifiers, as an alternate and practical ap-
proach to the missing feature problem. The algorithm gen-
erates multiple classifiers, each trained with a subset of the
features available. When an instance of unknown label that
has missing features is presented to the algorithm, the algo-
rithm simply sorts through all classifiers, and picks those
that did not use the missing features in its training. These
classifiers are then combined through majority voting.

59 80 110 149 210

557

 Three databases, drawn from practical real life applica-
tions, were used to evaluate the proposed algorithm. The ini-
tial results have been very promising, indicating the feasibil-
ity of the approach for those applications that satisfy the two
basic assumptions made by the algorithm. First, we assume
that the feature set is redundant, with an unknown number of
features that are in fact not required or not relevant to the
classification problem. Second, we also assume that these
features are independent of each other. These assumptions
are not overly restrictive, as many practical applications do
in fact use a redundant number of independent features. An
ideal group of applications would be those using sensors,
where the response of each sensor is not affected by those of
others. Each of the three applications described above fall
into this category.

The algorithm is particularly useful, when one or more of
the sensors malfunction, or when some of the data become
corrupted. It may be expensive, difficult, impractical or even
impossible to recollect such data, making it essential to be
able to classify data with missing features. The proposed al-
gorithm was able to accommodate data with up to 10% of
the features missing with virtually no performance degrada-
tion compared to the case with no missing features. The
missing features can be 10% of the sensors not functioning,
or 10% of varying number of sensor outputs not being avail-
able, or any intermediate scenario.

It was particularly promising to observe that a similar per-
formance level could be achieved when classifying data with
missing features as compared to classifying data with no
features missing. In fact, in certain cases, the performance
with missing features was better than that of no missing fea-
tures, indicating that some features were indeed redundant.

Future work on this algorithm would investigate the pos-
sibility of training the classifiers with a varying amount of
features. We will also investigate whether the algorithm can
accommodate a larger percentage (than 10%) of missing fea-
tures. An automated procedure for determining the optimum
pof value is also being explored.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. ECS-0239090,
“CAREER: An Ensemble of Classifiers Approach for In-
cremental Learning.”

REFERENCES
[1] V. Tresp, R. Neuneier, S. Ahmad, “Efficient methods for deal-

ing with missing data in supervised learning,” G. Tesauro,
D. S. Touretzky, and Leen T. K., editors, Advances in Neural
Information Processing Systems 7. MIT Press, 1995.

[2] V. Tresp, S. Ahmad, R. Neuneier, “Training neural networks
with deficient data,” J. D. Cowan, G. Tesauro, and
J. Alspector, editors, Advances in Neural Information Proc-
essing Systems 6. Morgan Kaufmann, 1994.

[3] S. Ahmad and V. Tresp, “Some solutions to the missing fea-

ture problem in vision,” C. L. Giles, Hanson S. J., and
Cowan J. D., editors, Advances in Neural Information Proc-
essing Systems 5. Morgan Kaufman, 1993.

[4] A. Morris, M. Cooke, P, Green, “Some Solutions to the Miss-
ing Feature Problem in Data Classification, with Application
to Noise Robust ASR,” Proc. Int. Conf. Acoustics, Speech,
and Signal Processing, (ICASSP98), vol. 2, pp: 737 - 740 ,
1993.

[5] R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An in-
cremental learning algorithm for multilayer neural networks,”
Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal
Proc., vol. 6, pp. 3414-3417, 2000.

[6] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: an
incremental learning algorithm for supervised neural net-
works,” IEEE Tran. Systems, Man and Cybernetics, C, vol.
31, no. 4, pp. 497-508, 2001.

[7] R. Polikar, J. Byorick, S. Krause, A. Marino and M. Moreton,
“Learn++: A Classifier Independent Incremental Learning
Algorithm for Supervised Neural Networks,” Proc. Int. Joint
Conf. Neural Networks (IJCNN2002), vol. 2, pp. 1742-1747,
Honolulu, HI, 2002.

[8] N. Littlestone and M. Warmuth, “Weighted majority algo-
rithm,” Information and Computation, vol. 108, pp. 212-261,
1994.

[9] L.K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 10, pp. 993-1001, 1990.

[10] M.I. Jordan and R.A. Jacobs, “ Hierarchical mixtures of ex-
perts and the EM algorithm,” Proc. of Int. Joint Conf. on
Neural Networks (IJCNN 1993), pp. 1339-1344, 1993.

[11] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining clas-
sifiers,” IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, vol. 20, no.3, pp. 226-239, 1998.

[12] T.G. Dietterich, “An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging,
boosting and randomization,” Machine Learning, vol. 40, no.
2, pp. 1-19, 2000.

[13] L.I. Kuncheva, “A theoretical study on six classifier fusion
starategies, “ IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 2, pp. 281-286, 2002.

[14] Y. Freund and R. Schapire, “A decision theoretic generaliza-
tion of on-line learning and an application to boosting,” Com-
puter and System Sciences, vol. 57, no. 1, pp. 119-139, 1997.

[15] C.L. Blake and C.J. Merz, UCI Repository of machine learn-
ing databases at http://www.ics.uci.edu/~mlearn/ MLReposi-
tory.html. Irvine, CA: University of California, Dept. of In-
formation and Computer Science, 1998.

[16] R. Polikar, R. Shinar, L. Udpa, M. Porter, “Artificial intelli-
gence Methods for Selection of an Optimized Sensor Array
for Identification of Volatile Organic Compounds,” Sensors
and Actuators B: Chemical, vol. 80, Issue 3, pp 243-254, De-
cember 2001.

558

	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	IJCNN CD-ROM Help
