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Abstract – A new learning algorithm is introduced that can 

accommodate data with missing features. The algorithm uses 
an ensemble of classifiers approach. The classifiers in the en-
semble are trained with random subsets of the total number of 
available features. The approach takes advantage of the basic 
assumption that an unknown subset of the features is in fact 
adequate for the classification, or in other words, that are re-
dundant, and possibly irrelevant features in the data. This as-
sumption is in general true for most practical applications. We 
empirically show that if a certain number of networks produce 
a particular classification performance using all of the features, 
then the same classification performance can be reached even if 
some features are missing, as long as the same number of use-
able networks can be generated with the missing features. The 
proposed approach has its roots in the incremental learning al-
gorithm, Learn++ which seeks to learn new information that is 
provided by additional datasets that may later become avail-
able, even when such data introduce new classes. We have 
modified the Learn++ algorithm for addressing the missing fea-
ture problem. The proposed algorithm showed surprisingly 
remarkable performance on three real-world applications, with 
up to 10% of the features missing in the validation / field data.   

I. INTRODUCTION 

A. The Missing Feature Problem 
Most commonly used classification algorithms, including 

neural networks, require that the number and nature of the 
features be set before the training. Once the training is com-
pleted, the validation or the field data must contain the exact 
same features as the training data for the classification algo-
rithm to determine the corresponding classes. If a particular 
instance is missing even a single feature, the classifier will 
not be able to produce a valid output for that input. It is not 
unusual for training, validation or field data to have missing 
features in some (or even all) of their instances, as bad sen-
sors, failed pixels, malfunctioning equipment, unexpected 
noise causing signal saturation, data corruption, etc. are fa-
miliar scenarios in many practical applications.  The prag-
matic approach that is often followed in such cases is simply 
ignoring those instances with missing features. This rather 
brute-force approach is suboptimal, however, and may not 
even be feasible if all instances are missing one or more fea-
tures. There are other theoretical approaches, many of which 
rely on Bayesian techniques for extracting class probabilities 
from partial data, by integrating over missing portions of the 
feature space [1,2,3,4]. Another approach is searching for 
the optimal subset of features so that fewer features are re-
quired; however, the problem still remains if one (or more) 

of these optimal features is missing, corrupted or unavail-
able otherwise.  

The proposed algorithm, named Learn++MF, follows an 
alternate strategy, combining an ensemble of classifiers ap-
proach with random feature selection. Basically, the idea is 
to train an ensemble of classifiers, each trained with a ran-
domly selected subset of the features. When an instance 
with missing feature(s) needs to be classified, those classifi-
ers trained with only those features that are presently avail-
able in the given instance are used to determine the correct 
classification. These classifiers are henceforth referred to as 
usable classifiers. This approach makes two basic assump-
tions: First, the feature set is redundant, and hence includes 
an unknown number of features that are actually not re-
quired, or even possibly irrelevant. Second, the features are 
assumed to be unrelated and/or independent (the value of 
any feature is independent of all others). While these as-
sumptions are clearly not satisfied in all classification prob-
lems, they actually hold true in many practical applications. 
This is because, most practical applications, knowingly or 
otherwise, do use a redundant set of features that are in fact 
independent from each other. It is these applications for 
which the proposed approach is designed. 

B. Ensemble of Classifiers 
The predecessor of the proposed algorithm is the previ-

ously presented incremental learning algorithm, Learn++ 
[5,6,7]. Learn++ generates an ensemble of weak classifiers, 
each trained with a slightly different distribution of the 
training data, which are then combined using the weighted 
majority voting [8]. Learn++, similar to other ensemble ap-
proaches, takes advantage of the instability of weak classifi-
ers, which allows the classifiers to construct sufficiently dif-
ferent decision boundaries for minor modifications in their 
training parameters, causing each classifier to make differ-
ent errors on any given instance. A strategic combination of 
these classifiers then eliminates the individual errors, gener-
ating a strong classifier.  

Using ensemble of classifiers has been well researched 
for improving classifier accuracy [9,10,11,12,13,14]; how-
ever, its potential for addressing the missing feature prob-
lem, as well as the incremental learning problem has been 
mostly unexplored. Learn++ was developed in response to 
recognizing the potential feasibility of ensemble of classifi-
ers in solving the incremental learning problem, whereas 
Learn++MF is designed to explore the feasibility of using 
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the ensemble of classifiers approach for solving the missing 
feature problem.  

Using the ensemble of weak classifiers approach has ad-
ditional benefits. First, the training time is often less for 
generating multiple weak classifiers compared to training 
one strong classifier. This is because, strong classifiers 
spend a majority of their training time in fine tuning the de-
sired decision boundary, whereas weak classifiers com-
pletely skip the fine-tuning stage as they only generate a 
rough approximation of the decision boundary. Intimately 
related to fast training, weak classifiers are also less likely to 
suffer from overfitting problems, since they avoid learning 
outliers, or quite possibly a noisy decision boundary.  

Since the ensemble of classifiers is combined through a 
majority voting process, each classifier can be trained using 
a different set of features. By creating an ensemble with 
various subsets of the features used to train each classifier, a 
subset of the classifiers can still be used when a particular 
instance is missing certain features. This is because an in-
stance missing certain features can be classified by those 
classifiers that did not use the missing features for training. 

II. THE LEARN++MF ALGORITHM 

As mentioned above, the Learn++MF algorithm uses an 
ensemble of classifiers, each of which is trained with a ran-
dom subset of the entire feature set. While not essential to 
the algorithm, we initially assume that the training data has 
no missing features, and/or there is sufficient training data 
with all features intact. The algorithm focuses on the more 
commonly seen, and potentially more annoying case of, 
field data containing missing features. The algorithm gener-
ates a number of classifiers each of which requires only a 
subset of all features. Hence, when an instance with missing 
features needs to be identified, only those classifiers that did 
not use the missing features in their own training data are 
used for classification. All other classifiers that were trained 
with one or more of the missing features of the given in-
stance are simply disregarded for the purpose of classifying 
the current instance.  

In order to keep track of which classifiers are used in 
classifying any given instance, we define the universal set 
and usable set of classifiers. The universal set of classifiers 
includes all classifiers that have been generated by the algo-
rithm thus far. The usable set of classifiers is the instance 
specific set of actual classifiers that can be used in identify-
ing the given instance. Similarly, we can also define the set 
of unusable classifiers, which for any given instance, are 
those classifiers that require the features missing in the 
given instance. We show empirically that if U classifiers 
yield a certain classification performance on data with no 
missing features, then a similar performance can be 
achieved simply by generating additional weak classifiers to 
obtain a total of U usable classifiers on data that have miss-
ing features. The assumptions for this property to hold are 
the availability of a dataset with sufficient redundancy, and a 

set of weak classifiers each of which is trained with slightly 
different parameters.  

The pseudocode and the block diagram of the Learn++MF 
algorithm are provided in Fig.1 and Fig. 2, respectively. The 
inputs to the algorithm are (1) the training data set D; (2) 
the percentage of features pof to be used for training indi-
vidual classifiers; (3) the number of classifiers to be created 
T; and (4) the sentinel value sen used in the data to desig-
nate a missing feature. The data set D contains m number of 
instances, each with a total of f number of features. The al-
gorithm is set to iteratively run T times, generating one ad-
ditional classifier (hypothesis) at each iteration. A discrete 
probability distribution Pt is created, essentially giving a 
weight to each feature. At each iteration t, a subset of fea-
tures, Fselection(t), is drawn according to this distribution such 
that those features with higher weights are more likely to be 
selected into Fselection(t) to be used in training current itera-
tion’s classifier, ht. Before the first iteration, P1 is initialized 
to be uniform, unless there is reason to choose otherwise, so 
that each feature has equal likelihood of being selected into  
Fselection(1). 
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Fig. 1 Learn++MF algorithm. 
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This distribution, which is updated later in the algorithm, 
is normalized in step 1 of the iterative loop, so that its sum is 
equal to 1, and that a legitimate distribution Pt is obtained  

∑
=

=
f

j
ttt jPPP

1
)(  (1) 

where j is an index on features. Next, pof % of the features 
are randomly drawn from Pt in step 2. The features selected 
constitute the set Fselection(t). We note that the pof value 
should be selected carefully. A high pof value will yield bet-
ter individual classifiers because each classifier will be 
trained with more features. However, fewer classifiers will 
then be available to classify instances with missing features. 
Conversely, a very low pof value will cause the classifiers to 
be too weak to achieve a meaningful classification perform-
ance. Experimental trials have shown that a typical pof value 
should be between 15-40% (of f, the total number of fea-
tures), depending on the redundancy of the features and/or 
complexity of the classification problem. Once Fselection(t) is 
obtained, the tth hypothesis ht is generated in step 3 using the 
features in Fselection(t). The trained classifier ht is then tested 
on the training data in step 4. We expect that ht achieve a 
minimum of 50% correct classification performance on its 
training data to ensure that it has a meaningful classification 
capacity. If this requirement is not satisfied by ht, then a new 
Fselection(t) is drawn and a new classifier is generated. 

Next, the distribution Pt is updated in step 5 according to  

f
tFPtFP selectiontselectiont

1))(())(( ⋅=  (2) 

such that the weights of those features that appear in Fselec-

tion(t) are reduced by a factor of f. Those features that were 
not in the current selection effectively have their weights in-
creased when Pt is normalized again in step 1 of iteration 
t+1. This feature weight update rule ensures that every fea-
ture has an equal probability of being selected, by reducing 
the weights of those that have been previously selected. 

During the validation phase, the algorithm searches for 
sentinels in each instance to be classified. Therefore, the 
values for the missing features must have been replaced with 
the sentinel, sen, before validation. The sentinel value 
should be chosen so that it is greatly out of the range of val-
ues that could conceivably occur in the data. This will en-
sure that actual values are not mistaken for the sentinel 
value. Therefore all features j, j=1,…,f with a sentinel value 
in the given instance are flagged and placed into the set  of 
missing features Mfeat(i) for that instance xi. Finally, all clas-
sifiers ht whose feature selection list Fselection(t) did not in-
clude those in Mfeat(i) (that is, all classifiers that did not use 
any of the features in Mfeat(i) ) are combined through major-
ity voting to determine the classification of instance xi. This 
constitutes the composite hypothesis Ht(i) for that instance: 
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Fig. 2. Block diagram of the Learn++MF algorithm 

where [| • |] evaluates to 1 if the predicate holds true. Equa-
tion (3) essentially picks the class that receives the highest 
vote among all classifiers. 

After T classifiers are generated, the current composite 
hypothesis becomes the final hypothesis. T should be cho-
sen large enough to create adequate number of usable clas-
sifiers for the problem at hand. 

III. SIMULATION RESULTS 

The algorithm was tested on a variety of databases. In 
each case different percentages of features (the pof parame-
ter) were used for training. The databases used included a 
gas identification database, an optical character recognition 
database, and a database classifying radar returns through 
the ionosphere. In all cases, multi-layer perceptron (MLP) 
networks were used as the base classifier. Since MLPs in 
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the ensemble were trained as weak classifiers, training pa-
rameters, such as the error goal or number of hidden layer 
nodes did not need fine tuning.  

A. Gas Identification (GI) Database 
The gas identification database used in this study con-

sisted of responses of six quartz crystal microbalances to 
five volatile organic compounds, including ethanol (ET), xy-
lene (XL), octane (OC), toluene (TL), and trichloroethelene 
(TCE). The database included 384 six-dimensional signals. 
180 were used for training and 204 were used for testing. 
The data distribution is shown in Table 1. Each network in 
the ensemble was trained with 2 out of 6, (pof = 33.3%), of 
the available attributes. We found that 50 usable networks 
would yield a classification performance of 81.4% when no 
features were missing. Additional networks were created to 
ensure that there would still be 50 usable networks with as 
many as 10% of the features missing in the test data. The 
ensemble was tested with five sets of test data. Each had a 
different percentage of features randomly replaced with sen-
tinels to simulate missing features. We note that the total 
number of features in the dataset is defined as the number of 
features per instance times the number of instances. The 
percentages of features removed represent the fraction of to-
tal number of features that were removed. Five datasets were 
created for this database with 0.0%, 2.5%, 5.0%, 7.5%, and 
10.0% of the features removed. The classification perform-
ances are given in Table 2. 

TABLE 1.DATA DISTRIBUTION FOR THE GI DATABASE 
 Training Data Test Data 
ET 30 34 
OC 30 34 
TL 50 62 
TCE 30 34 
XL 40 40 
Total 180 204 

TABLE 2.PERFORMANCE ON THE GI DATABASE 
% Features  

Missing 
Total # of 
Classifiers 

# of Usable 
Classifiers 

Test 
Perform. 

0.0% 50 50 81.4% 
2.5% 53 50 81.4% 
5.0% 56 50 81.4% 
7.5% 59 50 81.4% 

10.0% 62 50 81.4% 

Intuitively, the best generalization performance was ex-
pected from the set with no features missing, with decreas-
ing performances on the sets that had increasing number of 
missing features. However, we found out that when 50 us-
able networks were available for each set, the generalization 
performances were identical. As expected, a larger (62) 
number of networks was required when 10% of features 
were missing, to obtain 50 usable networks, as compared to 
other sets. 

B. Optical Character Recognition (OCR) Database  
This benchmark database, obtained from the UCI ma-

chine learning repository [15], consisted of 1200 training in-

stances and 1797 test instances of digitized hand written 
characters. The data distribution is shown in Table 3. The 
characters were digits, 0 through 9, digitized on an 8x8 grid, 
creating 64 features for 10 classes (two pixels had constant 
zero values throughout the entire data, and hence were re-
moved, leaving effectively 62 features). Twelve out of 62, 
(pof = 19.3%), features were used for training individual 
classifiers. For this database, 59 networks achieved a per-
formance of 94.5% on the test data with no missing fea-
tures. The previously described process of randomly remov-
ing features was also repeated for this database. The classi-
fication performance values are given in Table 4. 

TABLE 3. DATA DISTRIBUTION FOR THE OCR DATABASE 
 Training Data Test Data 

0 100 178 
1 150 182 
2 100 177 
3 150 183 
4 100 181 
5 150 182 
6 100 181 
7 150 179 
8 100 174 
9 100 180 

Total 1200 1797 

TABLE 4. PERFORMANCE ON THE OCR DATABASE 
% Features  

Missing 
Total # of 
Classifiers 

# of Usable 
Classifiers 

Test 
Perform. 

0.0% 59 59 94.5% 
2.5% 80 59 94.5% 
5.0% 110 59 95.0% 
7.5% 149 59 92.2% 
10.0% 210 59 93.7% 

This case did not yield the exact same performance val-
ues when features were missing, unlike the GI database. It 
did, however, have very consistent performances all within 
2% of each other. Interestingly, having no features missing 
does not always guarantee the highest performance. In this 
case the dataset with 10.0% of the features removed did bet-
ter than the dataset with 7.5% of the features removed. In 
fact the dataset with 5.0% features removed performed even 
better than the dataset with all features present. This can be 
explained by the presence of irrelevant features whose mere 
existence may hinder the classification performance [16]. In 
such cases, a large number of networks are needed to pro-
vide the equivalent number of usable networks, e.g., when 
10.0% of features were missing, three times as many (210) 
networks were required to achieve 59 usable networks. 

The performance relationship between the total number 
of classifiers versus usable classifiers illustrates an interest-
ing relationship, as shown in Figs. 3 and 4. The y-axis in 
each figure is classification performance. The x-axis in Fig. 
3 is the total number of classifiers and the x-axis in Fig. 4 is 
the number of usable networks. In both cases the bold line 
is the no-missing-features case, plotted as a solid line with 
X’s through it. We note the obvious outcome that it takes 
longer for those classifiers trained with larger percentage of 
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features missing to achieve a desired performance figure. 
However, plotting performance versus number of usable net-
works, we notice that all plots move right on top of each 
other (Fig.4). This illustrates that, at least for databases with 
sufficient redundancy, a large number of features may be 
missing without affecting the classification performance, 
when the described ensemble approach is used.  

 
Fig. 3 Performance vs. actual networks on the OCR database 

 
Fig. 4 Performance vs. usable networks on the OCR database 

The vertical lines in Fig.4 indicate the end of the plot (# 
of classifiers generated) for each dataset. 

C. Ionosphere Radar Return (ION) Database  
This benchmark database, also obtained from the UCI 

machine learning repository [15], consisted of 220 training 
instances and 131 test instances of radar returns through the 
ionosphere. This system consists of a phased array of 16 
high-frequency antennas with a total transmitted power on 
the order of 6.4 kW. The targets were free electrons in the 
ionosphere. "Good" radar returns are those showing evi-
dence of some type of structure in the ionosphere. "Bad" re-
turns are those that do not; whose signals pass through the 

ionosphere. The data distribution is shown in Table 5. Nine 
out of 34, (pof = 26.5%), of the available features were used 
for training individual classifiers. For this database, 53 us-
able networks achieved a performance of 94.7% on the test 
data when no features were missing. The same process of 
randomly removing features that was performed on the pre-
vious two databases for testing was also repeated here. The 
classification performance values are given in Table 6.  

TABLE 5. DATA DISTRIBUTION FOR THE ION DATABASE 
 Training Data Test Data 

Good 140 85 
Bad 80 46 

Total 220 131 

TABLE 6. PERFORMANCE ON THE ION DATABASE 
% Features 

Missing 
Total # of  
Classifiers 

# of Usable  
Classifiers 

Test 
Perform. 

0.0% 53 53 94.7% 
2.5% 67 53 94.7% 
5.0% 85 53 94.7% 
7.5% 106 53 93.9% 
10.0% 142 53 95.4% 

This database also produced very consistent classification 
performances. There was a very slight drop off in perform-
ance for the dataset with 7.5% of the features missing. 
However, there was actually about a one percent increase in 
performance for the dataset with 10.0% of the features 
missing as compared to the other three datasets. 

One might also wonder, what generalization performance 
could be achieved, if the entire set of features were made 
available to the algorithm (as opposed to pof%). This would 
constitute the gold standard to compare the classifier per-
formances with missing features.   

TABLE 7. PERFORMANCE ON THE ION DATABASE WITH 
ALL FEATURES USED 

% Features 
Missing 

Total # of  
Classifiers 

# of Usable  
Classifiers 

Test 
Perform. 

0.0% 34 34 94.7 % 

As indicated in Table 7, when all 34 features were used 
during training, the classification performance was virtually 
identical to the case where only a random 9 out of the 34 
features were used, though only 34 (weak) classifiers were 
required to achieve this performance as opposed to 53. We 
also note that the equivalence of the number of classifiers 
used by the algorithm and the number of features (34) is 
purely coincidental. 

IV. DISCUSSIONS & CONCLUSIONS 

We presented the Learn++MF algorithm, employing an 
ensemble of classifiers, as an alternate and practical ap-
proach to the missing feature problem. The algorithm gen-
erates multiple classifiers, each trained with a subset of the 
features available. When an instance of unknown label that 
has missing features is presented to the algorithm, the algo-
rithm simply sorts through all classifiers, and picks those 
that did not use the missing features in its training. These 
classifiers are then combined through majority voting. 

59     80      110       149              210 
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 Three databases, drawn from practical real life applica-
tions, were used to evaluate the proposed algorithm. The ini-
tial results have been very promising, indicating the feasibil-
ity of the approach for those applications that satisfy the two 
basic assumptions made by the algorithm. First, we assume 
that the feature set is redundant, with an unknown number of 
features that are in fact not required or not relevant to the 
classification problem. Second, we also assume that these 
features are independent of each other. These assumptions 
are not overly restrictive, as many practical applications do 
in fact use a redundant number of independent features. An 
ideal group of applications would be those using sensors, 
where the response of each sensor is not affected by those of 
others. Each of the three applications described above fall 
into this category.  

The algorithm is particularly useful, when one or more of 
the sensors malfunction, or when some of the data become 
corrupted. It may be expensive, difficult, impractical or even 
impossible to recollect such data, making it essential to be 
able to classify data with missing features. The proposed al-
gorithm was able to accommodate data with up to 10% of 
the features missing with virtually no performance degrada-
tion compared to the case with no missing features. The 
missing features can be 10% of the sensors not functioning, 
or 10% of varying number of sensor outputs not being avail-
able, or any intermediate scenario. 

It was particularly promising to observe that a similar per-
formance level could be achieved when classifying data with 
missing features as compared to classifying data with no 
features missing. In fact, in certain cases, the performance 
with missing features was better than that of no missing fea-
tures, indicating that some features were indeed redundant. 

Future work on this algorithm would investigate the pos-
sibility of training the classifiers with a varying amount of 
features. We will also investigate whether the algorithm can 
accommodate a larger percentage (than 10%) of missing fea-
tures. An automated procedure for determining the optimum 
pof value is also being explored. 

ACKNOWLEDGEMENTS 

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. ECS-0239090, 
“CAREER: An Ensemble of Classifiers Approach for In-
cremental Learning.” 

 

REFERENCES 
[1]  V. Tresp, R. Neuneier, S. Ahmad, “Efficient methods for deal-

ing with missing data in supervised learning,” G. Tesauro, 
D. S. Touretzky, and Leen T. K., editors, Advances in Neural 
Information Processing Systems 7. MIT Press, 1995.   

[2]  V. Tresp, S. Ahmad, R. Neuneier, “Training neural networks 
with deficient data,” J. D. Cowan, G. Tesauro, and 
J. Alspector, editors, Advances in Neural Information Proc-
essing Systems 6. Morgan Kaufmann, 1994.   

 
[3]  S. Ahmad and V. Tresp, “Some solutions to the missing fea-

ture problem in vision,” C. L. Giles, Hanson S. J., and 
Cowan J. D., editors, Advances in Neural Information Proc-
essing Systems 5. Morgan Kaufman, 1993.  

[4]  A. Morris, M. Cooke, P, Green, “Some Solutions to the Miss-
ing Feature Problem in Data Classification, with Application 
to Noise Robust ASR,” Proc. Int. Conf. Acoustics, Speech, 
and Signal Processing, (ICASSP98), vol. 2, pp: 737 - 740 , 
1993. 

[5]  R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An in-
cremental learning algorithm for multilayer neural networks,” 
Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal 
Proc., vol. 6, pp. 3414-3417, 2000. 

[6]  R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: an 
incremental learning algorithm for supervised neural net-
works,” IEEE Tran. Systems, Man and Cybernetics, C, vol. 
31, no. 4, pp. 497-508, 2001.  

[7] R. Polikar, J. Byorick, S. Krause, A. Marino and M. Moreton, 
“Learn++: A Classifier Independent Incremental Learning 
Algorithm for Supervised Neural Networks,” Proc. Int. Joint 
Conf. Neural Networks (IJCNN2002), vol. 2, pp. 1742-1747, 
Honolulu, HI, 2002. 

[8] N. Littlestone and M. Warmuth, “Weighted majority algo-
rithm,” Information and Computation, vol. 108, pp. 212-261, 
1994.   

[9] L.K. Hansen and P. Salamon, “Neural network ensembles,” 
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 10, pp. 993-1001, 1990.   

[10] M.I. Jordan and R.A. Jacobs, “ Hierarchical mixtures of ex-
perts and the EM algorithm,” Proc.  of Int. Joint Conf. on 
Neural Networks (IJCNN 1993), pp. 1339-1344, 1993.  

[11] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining clas-
sifiers,” IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, vol. 20, no.3, pp. 226-239, 1998.   

[12] T.G. Dietterich, “An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging, 
boosting and randomization,” Machine Learning, vol. 40, no. 
2, pp. 1-19, 2000.  

[13] L.I. Kuncheva, “A theoretical study on six classifier fusion 
starategies, “ IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 24, no. 2, pp. 281-286, 2002.   

[14] Y. Freund and R. Schapire, “A decision theoretic generaliza-
tion of on-line learning and an application to boosting,” Com-
puter and System Sciences, vol. 57, no. 1, pp. 119-139, 1997.  

[15] C.L. Blake and C.J. Merz, UCI Repository of machine learn-
ing databases at http://www.ics.uci.edu/~mlearn/ MLReposi-
tory.html. Irvine, CA: University of California, Dept. of In-
formation and Computer Science, 1998. 

[16] R. Polikar, R. Shinar, L. Udpa, M. Porter, “Artificial intelli-
gence Methods for Selection of an Optimized Sensor Array 
for Identification of Volatile Organic Compounds,” Sensors 
and Actuators B: Chemical, vol. 80, Issue 3, pp 243-254, De-
cember 2001. 

558


	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX
	----------------
	Search CD-ROM
	Search Results
	Print
	----------------
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	----------------
	IJCNN CD-ROM Help
	----------------

