
Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Random Feature Subset Selection for
Analysis of Data with Missing Features

Joseph DePasquale, Student Member IEEE and Robi Polikar, Member IEEE

Abstract - We discuss an ensemble-of-classifiers based algo-
rithm for the missing feature problem. The proposed approach
is inspired in part by the random subspace method, and in part
by the incremental learning algorithm, Learn++. The premise is
to generate an adequately large number of classifiers, each
trained on a different and random combination of features,
drawn from an iteratively updated distribution. To classify an
instance with missing features, only those classifiers whose
training data did not include the currently missing feature are
used. These classifiers are combined by using a majority voting
combination rule to obtain the final classification of the given
instance. We had previously presented preliminary results on
a similar approach, which could handle up to 10% missing
data. In this study, we expand our work to include different
types of rules to update the distribution, and also examine the
effect of the algorithm's primary free parameter (the number
of features used to train the ensemble of classifiers) on the
overall classification performance. We show that this algo-
rithm can now accommodate up to 30% of features missing
without a significant drop in performance.

I. INTRODUCTION

ne of the most commonly encountered problems in the
real-world implementation of automated decision mak-

ing systems is the issue of missing data. Bad sensors, cor-
rupted pixels, malfunctioning equipment, human error in
data collection, and data corruption are all common scenar-
ios in real-world applications, resulting in partial-loss of
data during acquisition. Sometimes such loss of data is
merely a nuisance, when, for example, a few data points
here and there may be missing. Such cases are often ad-
dressed by ignoring the data points with missing compo-
nents. In other cases, however, the nature of data loss may
render the subsequent data analysis impossible. Automated
classification applications are prime examples of such cases,
particularly if the classifier (or model used to analyze the
data) is not designed to handle data with missing features.
An extreme, but not unlikely scenario is when all instances
in a given database are missing a single (or more) feature. In
such cases, instances with missing features cannot be ig-
nored, as this would amount to discarding the entire data.
For most commonly used classifiers, including feed forward

Manuscript received January 31, 2007. This material is based upon
work supported by the National Science Foundation under Grant No ECS-
0239090.

Joseph DePasquale () and Robi Polikar
(p olikar~~~u) are with the Signal Processing and Pattern Recogni-
tion Laboratory, Electrical and Computer Engineering, Rowan University,
201 Mullica Hill Rd, Glassboro, NJ 08028 USA.

Contact author: R. Polikar, phone: (856) 256-5372; fax: (856) 256-5241.

neural networks this is a potentially fatal weakness.
Extensive research has already been performed to develop

robust approaches to handle the missing data problem. Data
imputation, such as replacing the missing value with the av-
erage of its k-nearest neighbors is a commonly used practical
approach that can provide meaningful estimates [1,2]. How-
ever, this and similar imputation techniques require training
data to be sufficiently dense, so that a true representation of
the missing value can be obtained. This requirement is
rarely satisfied in real-world applications even for problems
with small dimensionality. There are, of course, several
theoretically rigorous approaches that provide the best esti-
mate of the missing value under certain conditions. These
techniques are often probabilistic in nature, and they require
some prior knowledge of the data distributions and/or a suf-
ficiently dense training dataset. These techniques are in fact
optimal if prior distribution information is available; how-
ever, they can lead to grossly inaccurate estimates of the
missing value if the distribution information is not available.
Then, the distribution itself must be estimated from the ex-
isting training data, which in turn requires that the training
dataset is sufficiently dense. Techniques based on Bayesian
estimation or expectation maximization are well established
examples of such approaches [3,4].
An alternative, and perhaps a more intuitive approach for

dealing with missing features is provided by neuro-fuzzy al-
gorithms, where missing data values are either estimated, or
the classification is done based on the fuzzy membership of
the data point with respect to its nearest neighbors, clusters,
or hyperboxes. The parameters of the clusters and hyper-
boxes are determined from the existing data points. Algo-
rithms based on general fuzzy min-max neural networks [5],
ARTMAP or fuzzy c-means clustering [6] are examples of
this approach.
More recently, ensemble-based classification algorithms

have also been proposed for the missing feature problem. In
[7], Juszczack and Duin describe using an ensemble of one-
class classifiers, each trained on a single feature. Such an
ensemble is capable of handling any combination of missing
features in the data using the least number of classifiers.
This approach has been found to be quite effective as long
as each feature used to train individual classifiers is rea-
sonably sufficient to approximate the necessary decision
boundary. Melville et al. propose a different ensemble based
approach through their algorithm DECORATE, which cre-
ates artificial data with no missing features from the original
data that has missing features [8].

1-4244-1 380-X/07/$25.00 ©2007 IEEE

The algorithm proposed here, called Learn .MF, is an al-
ternative approach based on generating an ensemble of clas-
sifiers, each trained on a random subset of the available fea-
tures. An instance x with missing features is then classified
by majority vote decision of those classifiers whose training
data did not include the particular features missing in x. In
this approach, the subset of features used to train each clas-
sifier is drawn from an iteratively updated distribution,
which ensures that the combinations of features that have
not previously been used have a higher likelihood of being
selected. As such, the algorithm is inspired in part by the
feature subset selection ideas introduced by the Ho's random
subspace method (RSM) [9], and in part by the distribution
update rule mechanism used in AdaBoost [10] and Learn++
type algorithms [11]; hence the name Learn++.MF for miss-
ing feature problems.

In our preliminary work, we described a similar approach
using a specific distribution update rule, and showed that the
proposed approach could handle the missing data that com-

prised as much as 10% of the entire data size [12]. In this
contribution, we extend our work by comparing different
feature distribution update rules, and analyzing the effect of
primary free parameter of the algorithm on classification
performance. We show that by judiciously selecting this pa-

rameter - the number (or percentage) of features to be used
in the feature subsets - we can now handle as much as 300o
missing data.

II. LEARN++.MF
An intuitive ensemble based approach would be to train

one or more classifiers for every possible combination of
features subsets. Such an approach, perfectly suitable for
datasets with few features, has in fact been previously pro-

posed [13]. As the number of features increases, however,
training classifiers with such an exhaustive selection of fea-
ture sets becomes computationally prohibitive: for a data-
base with n features, the total number of feature subsets is

n n! 2
K=> =2

k= n(-k)!k!
(1)

On the other hand, while the number of feature subsets
increase exponentially with the total number of features, the
probability of any given feature subset being missing also
decreases exponentially. Hence, trying to accommodate
every possible combination of features is not only prohibi-
tively expensive, but it is also unnecessary (and is an ineffi-
cient use of computer resources). If we have any prior in-
formation on the expected ratio of features missing (a very

rough approximation is usually good enough), a random se-

lection of a relatively small number of combinations can be
used to address most combinations of missing features.
Learn++.MF follows such an approach: it trains an ensemble
of classifiers with a random subset of the features, where the
number of features used to train each classifier is a free pa-

rameter of the algorithm. The global number of features

available for training is defined as f We define nof<f as

the number of features used to train each classifier in the en-

semble. Learn++.MF also employs an iterative distribution
update rule so that the feature combinations not previously
accounted for are more likely to be selected for future classi-
fiers. We show that Learn++.MF can then classify the data
with missing features with little or no performance loss,
compared to classifying fully intact data, even when large
portions of data may be missing.

The algorithm is described in detail below, and its pseu-

docode is provided in Figure 1.

Inputs:
* Sentinel value, sen, denoting missing features.
* A supervised algorithm, BaseClassifier
* The number of classifiers to be generated, T
* Training data, S = {(xi, yi) i = I NJ.
* Number of features used to train each classifier,

nof
Traing

Initialize D1(j) = 1/ f,V,ij = 1, , f
Do for t = 1, ...,T

1. Normalize the distribution Dt
2. Draw noffeatures from distribution Dt
3. IfS includes instances with missing features,

choose those instances that are not missing the
features selected in step 2.

4. Train classifier Ct with BaseClassifier

using the training data selected in step 3.
5. Update the distribution Dt

End Loop
Validation / Testing

Given test data Z = zi }, i = 1, .. .,I

Do fori= 1,...,I
1. Determine the missing features in zi which

have previously been flagged using the
sentinel sen. Let M(i) be the array holding in-
dices of the missing features.

2. Choose classifiers whose training data did not
include the missing features indicated in M(i).

3. Combine the classifiers chosen in step 2 using
simple majority voting.

4. Decide on the class that receives the highest
vote from the ensemble.

End Loop

Fig. 1. The pseudocode of algorithm Learn .MF

The inputs to Learn .MF are the training data S, a super-
vised classification algorithm, BaseClassifier, the number of
features, nof; used to train each classifier, the number of
classifiers, T, to be generated, and a sentinel value, sen, a
placeholder for missing features. The numerical value of
sen should be kept well outside the range of data values be-
ing processed. A distribution D, which will be used to de-
termine feature subsets, is initialized to be uniform. Such
initialization ensures that all features are equally likely to be
drawn into the first feature subset. The distribution is then
iteratively updated. During the tth iteration, Learn++.MF
draws a random bootstrap sample of nof features from the
distribution Dt I Let Fselection (t) represent those features se-

lected to train the tth classifier Ct. This allows us to keep
track of which features have previously been used on which
classifiers. If the training dataset is complete, then the entire
training dataset is used to train classifier Ct, but only using
the selected subset of the features. If the training dataset in-
cludes missing features as well, then those instances that are
not missing the features in Fselection (t) are used to train Ct.

The distribution is then updated such that the features
that have been used to train the current classifier are less
likely to be selected again in the following iteration. Equa-
tion (2) represents this distribution update. The value of, is
a parameter which we vary to investigate the effect of dif-
ferent distribution update rules, and determine whether a
particular selection significantly affects the overall classifi-
cation performance. In actual real-world use, the distribution
update would normally be a pre-determined expression. In
this study, was set to three different database specific val-
ues: (i),B = If, (ii), = noflf; and,B = 1/nof: In our prelimi-
nary work, only the first, value was used.

Dt+1 (Fselection (t)) = P * Dt (Fselection (1)) (2)

We have also tried a fourth mechanism, where no distri-
bution update rule was used, by drawing each feature subset
from a uniform distribution.

During field use and/or before validation of the algorithm,
the field / test data is first scanned for missing or corrupt
values, which are replaced by the sentinel value sen. For any
given test instance zi the algorithm first determines which
features, if any, of zi are missing by looking for the sentinel
values in zi. The indices of the missing features (if any) are
then stored in an array M(i).

M(i) = {arg(zi(j) == sen}, VI,j = 1, *,f (3)

Comparing this set of (missing) features to each of the
Fselection(t), Learn++.MF determines which classifiers Ct were
trained on feature set that did not include the features in
M(i). The decisions of those classifiers are then combined by
majority voting to determine the final classification of zi.

where [I * l] evaluates to 1, if the predicate holds true, and
zero otherwise; and 6(zi) is the ensemble decision of zi.

While the algorithm has several free parameters, the one
that matters the most is the number of features (noj) used to
train the individual classifiers. This is because a judicious
selection of this parameter can not only affect the final clas-
sification performance, but also the portion of the data that
can be analyzed by the algorithm. The number of classifiers
to be trained, T, has relatively less impact, as long as a suffi-
ciently large number of classifiers are generated. The results
obtained by evaluating this algorithm on two benchmark and
one real-world dataset are provided below, along with the
analysis of the impact of the nofparameter.

III. RESULTS

We present the results of the implementation of the algo-
rithm on two datasets obtained from the UCI repository [14],
and one real-world database. The benchmark datasets were
the 16-feature, 10-class Pen-Digits database for recognition
of hand written numerical characters, and the 34-feature, 2-
class Ionosphere database for classifying radar returns from
the ionosphere. The real world application was 12-feature
and 12-class gas identification database for identifying one
of 12 volatile organic compounds (VOCs) from responses of
quartz crystal microbalance gas sensors.

For each database, missing values were simulated by ran-
domly removing the entries from the data matrix. The per-
centage of missing features (PMF) was varied from 0°0 (no
data missing) up to 30°0 in steps of 2.5%. Ten independent
trials were performed for each experiment, where the train-
ing and data sets were randomly shuffled. All results are av-
erages of such 10 independent trials.

Table 1 shows the four nof values, and the number of
classifiers T used for each experiment. Total number of fea-
tures in each dataset is also indicated in parenthesis in the
first column. As we discuss below, the range of nof values
chosen for these experiments roughly represents 25-50% of
the total number of features. Note that the value of nof is in-
versely proportional to the number of missing features that
can be accommodated by the algorithm. Specifically the al-
gorithm can handle at most f-nof missing features for any
test instance. For example, if a classifier was trained using 3
out of 12 features, the algorithm can then handle any combi-
nation of features missing within the range 1 - 9. This is the
manner in which the algorithm is able to avoid using a very
large number of classifiers.

TABLE 1:
NUMBER OF FEATURES (no]) AND ENSEMBLE SIZE (T)

USED FOR EACH DATASET

Dataset (f) nof, nof2 nfof3 nfof4 T
VOC (12) 3 4 5 6 200
PEN (16) 6 7 8 9 250
ION (34) 8 10 12 14 1000

C(z1) = arg max E [l M(i) n Fselection (t) = 0 1] (4)
YEEY t:C, (zi)=y

A. VOC Database
This database consists of the responses of 12 quartz crys-

tal microbalance sensors to 12 different volatile organic
compounds (VOC), including toluene, xylene, hexane, oc-
tane, methanol, and trichloroethylene, among others. Figure
2 summarizes the performance of the algorithm for various
values of nof (indicated with different line styles), as well as
four different distribution update rules (one for each row of
plots).

The plots on the left indicate the generalization perform-
ance of the algorithm with respect to percentage of missing
features (PMF) in the 0 to 30°0 range.

As discussed in the introduction, Learn++.MF does not
guarantee that all possible combinations of features can be
accommodated as missing data. Since features are selected
at random, and since an exhaustive search is not used, there
may be certain feature combinations not represented by any
of the classifiers trained in the ensemble. Instances with
those exact feature combinations cannot be classified by any
of the classifiers in the ensemble, and hence cannot be proc-
essed. The plots on the right show the average percentage of
instances that can be processed by the algorithm. Two fami-
lies of curves are given in each plot: those on the center of
the plot show the average Percentage of Instances Processed
(PIP) that can be achieved by a single classifier. The family
of curves in the upper portion of these plots show the aver-
age PIP achieved by the Learn++.MF ensemble.

Several interesting observations can be made by analyzing
different families of curves in Figure 2. The first and fore-
most observation is that the algorithm's generalization per-
formance exhibits very little or no performance drop for
even large PMF values. A decline in the performance is cer-
tainly expected as the percent of missing features increase,
and such a decline is seen for certain nof values, however
the decline is very minor. In the worst scenario obtained for
nofJ3, the overall performance decline is merely 4°0 with as
much as 30%0 of the data being missing. Second, the per-
formances appear to be slightly higher for larger nof values.
This makes sense, as the more features are used, the more
information is provided to the classifier (assuming that all
features carry relevant information - which they do in this
application). Third, while the distribution update rule with,
= noflf performs better than other update rules, the differ-
ences in the performances are not statistically significant.

Based on the performance plots (on the left), one may be
inclined to think that the higher the nof the better the per-
formance, and hence higher nof values should be used
whenever possible. Analyzing the PIP plots however, draws
a completely different picture: the smaller the nof the larger
the amount of data that can be processed.

% Processed Instances (PIP)

98 - IUUN

96 _ 80
60

94-
40-92 = noflf
20

90
0 10 20 30 0

98 r 100 i

10 20 30

96 :f -

94

92
,9 = 1/f

90
10 10 20 30

98 100

96 ^ t > - 80
94 60

j%

92 40
20

90 1
0 10 20 30

98

96

94

92-
uniform

90
0 10 20 30
% Missing Feature (PMF)

~-~-~-- 3 features

100

80

60

40

20

0

4 features

10 20 30

10 20
% Missing Feature (PMF)

5 features

30

6 features

Fig 2. Learn +.MF performance on VOC database

This makes sense: if we use a large number of features to
train each classifier (say 10 out of 12), then we need the
same large number of features to be available (10 in this
case) in the test instance. Then, we can accommodate fewer
number of missing features (at most 2, in this example) for
any given instance. Hence a larger number of feature com-
binations will be left unprocessed by the classifier. Con-
versely, if we use fewer number of features for training the
classifiers (say, 3 out of 12), then fewer number of features
will be necessary to classify any given instance. Hence, a
larger number of missing features (up to 9), and therefore, a
larger number of combinations of missing features can be
accommodated by the algorithm.

The plots also indicate that using an ensemble approach
helps regardless what nof is used. Note that for any of the
four distribution update rules, the average PIP drops rapidly
to around 40°0 when PMF reaches 30°0, if we use a single
classifier to classify data with missing features. However,
when we use an ensemble of classifiers, the PIP is still 100%
for nof=3, and about 80-90% for nof=6.

% Ensemble performance

L

B. Pen-Digits Database
The Pen-Digits database consists of handwritten numeri-

cal values zero through nine. Each of the handwritten char-
acters is digitized to obtain sixteen attributes. Fig 3 shows
the generalization performance of the algorithm (on the left)
and the PIP values (on the right) for four different nofvalues
and four different distribution update mechanisms. As in the
previous set of experiments, and as expected, there is a
slight and steady decline in the performance as PMF in-
creases. The generalization performance still reaches 85%
when the PMF at 3000, indicating the ability of the algorithm
to handle missing data. Performance wise, there is little to
no difference among different update rules (though, nofif
and 1/fbeing the better ones), as well as among different nof
values.
On the other hand, there is substantial difference in the

PIP values for different selection of nof: As in the VOC da-
tabase, a higher PIP can be obtained when fewer features (6
out of 16) are used, compared to that when larger number of
features are used (9 out of 16). Also, as in the previous case,
using an ensemble substantially increases the amount of in-
stances that can be processed, as this adds considerable re-
dundancy and robustness to the algorithm. Using
Learn++.MF with nof=6, 98% of instances could be proc-
essed when 3000 of the features were missing, whereas for
nof=9, PIP drops to about 60%. If a single classifier were
used instead of Learn++.MF, PIP then drops to 15% for
nof=6 and to a practically useless 5% when nof= 9.

C. Ionosphere Database
The 34-feature ionosphere database is a two class problem

for classifying radar returns as "good" or "bad." If the radar
signal bounces of the ionosphere and returns, it is defined as
"good," if it passes through the ionosphere it is considered
"bad." Fig 4 shows the similar generalization performance
and PIP plots for this database. Similar trends are exhibited
here as in the previous two applications, except that using
fewer nof provides not only higher PIP (expected), but also
higher performance (not usually expected, perhaps due to
this database including irrelevant features).

In general, the noflf update rule performed better (though
the difference from Ilf was not statistically significant),
fewer nof values provided better PIP (100% even for 300/
PMF), and of course an ensemble combination provides
dramatically more resistance to potential combinations of
features that cannot be processed.

Ensemble performance

86 -

80
fl = 1/hno

75
0 1 0 20 30

°J Processed Instances (PIP)
166
86

46

20

0
0 10 20 30

106
80
66

46

26

6
0 10 20 30

86

660

40

20

6
0 10 20 30

unioinm vu
75

0 1 0 20 30 0 1 0 20 30
% Missing Feature (PMF) % Missing Feature (PMF)

- 6 features - ---7 features 8 features 9 features

Fig 3. Learn++.MF performance on PEN database

Ensemble performance % Processed Instances (PIP)

100
95 0\~~~~~ ~~~~86

60 N+
90 4640 %e^

fi=noff 260
85 6 .

0 1 0 20 30 0 1 0 20 30

. .- 166..

60 '-
96 46

fll=ff¢ 20
85 6

6 1 6 20 36 6 1 6 20 30

. . 100_ .-_

860
6 40

=1/nof 20
85 6

0 1 0 20 30 0 1 0 20 30

.- 1 00-fx w !

95 4 ';S+ FFxb80A b
60

X6 4 b 460

1m~~~~ ~~20 ; :
85 mi00 1 0 20 30 0 1 0 20 30

% Missing Feature (PMF) % Missing Feature (PMF)

6-----8 features 10 features ----- 12 features 14 features

Fig 4. Learn +.MF performance on ION database

IV. CONCLUSIONS

In this paper we described an ensemble based algorithm
for analyzing data with missing features. The algorithm
combines the random subset selection mechanism of the ran-
dom subspace method, with the distribution update rule of
the incremental learning algorithm Learn++. In essence, an
ensemble of classifiers is generated, where each classifier is
trained on a different subset of the available features. An in-
stance x with missing features can then be classified by the
majority voting of those classifiers whose training data did
not include the features missing in x. We observe that this
algorithm works rather well, in analyzing a dataset with as
much as 3000 missing data. The algorithm may be able to
handle a higher PMF, depending on the dataset and the nof
value chosen, however, this is yet to be tested.
We found out that using different distribution update rules

has relatively little effect in the final generalization perform-
ance of the algorithm. While the nofif performed consis-
tently better, and the uniform distribution performed consis-
tently poorer, the differences were rarely significant.

While the distribution update rule may not have much ef-
fect in the algorithm behavior, the value of nofdoes. In gen-
eral, using a larger nof will yield better performances, if all
features carry relevant information, since the classifier will
be trained with more information carrying features. How-
ever, using fewer nof for training the individual classifiers
allows a larger portion of the data to be processed by the en-
semble.
We have not studied the specific effect of the ensemble

size (the parameter 1). In general, however, the larger the T,
the more feature combinations can be processed. While the
number of classifiers required for obtaining good overall
performances may seem high in absolute terms (200 - 1000
for the applications presented in this paper), it is in fact
fairly low in relative terms, compared to the number of clas-
sifiers that would have been necessary to be able to handle
every possible missing feature combination. Furthermore,
since each classifier is trained on a smaller dimensionality
dataset, the training is often fairly fast.

Finally, we should also mention that the algorithm makes
one implicit assumption: there are in fact a redundant num-
ber of features, where the redundancy is preferably distrib-
uted randomly. Of course, the identity of those redundant
features are unknown to us, as otherwise they would have
already been removed from the data. We note that redun-
dancy requirement of the algorithm is not an overly restric-
tive one, since many applications of practical interest gener-
ate redundant data. For such applications, Learn++.MF may
prove to be very beneficial.

Our future work includes evaluating the algorithm on
datasets with even larger feature sizes, and establishing
theoretical or empirical bounds on the required ensemble
size.

REFERENCES

[1] K.L. Wagstaff, V.G. Laidler, "Making the most of missing values: ob-
ject clustering with partial data in astronomy," 14th Astronomical
Data Analysis and Systems Conf., P. L. Shopbell, M. C. Britton, and
R. Ebert, Eds., vol. 30, 2005, pp. 2.1.25.

[2] R. L. Morin, D. E. Raeside, "A reappraisal of distance-weighted k-
nearest neighbor classification for pattern recognition with missing
data," IEEE Trans. Systems, Man and Cybernetics, vol. 11, pp. 241-
243, 1981.

[3] A. Dempster, N. Laird, D.R. Rubin, "Maximum-likelihood from im-
complete data via the EM algorithm (with discussion)," Journal of the
Royal Statistical Society, Series B, pp. 1-38, 1997.

[4] V. Tresp, R. Neuneier, S. Ahmad, "Efficient methods for dealing with
missing data in supervised learning," G. Tesauro, et al.(eds), Advances
in Neural Information Processing Systems, vol. 7. MIT Press, 1995.

[5] B. Gabrys, "Neuro-Fuzzy Approach to Processing Inputs with Missing
Values in Pattern Recognition Problems," International Journal of
Approximate Reasoning, vol. 30, pp. 149-179, 2002.

[6] C. Lim, J. Leong, M. Kuan, "A Hybrid Neural Network System for
Pattern Classification Tasks with Missing Features," IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 27, pp. 648-653,
2005.

[7] P. Juszczak and R.P.W. Duin, "Combining One-Class Classifiers to
Classify Missing Data," Multiple Classifier Systems MCS 2004, Lec-
ture Notes in Computer Science, vol. 3077, pp. 92-101, 2004.

[8] P. Melville, N. Shah, L. Mihalkova, and R. Mooney, "Experiments on
ensembles with missing and noisy data," Multiple Classifier Systems,
Lecture Notes in Computer Science, vol. 3077, pp. 293-302, 2004.

[9] T.K. Ho, "The Random Subspace Method for Constructing Decision
Forests, IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, pp. 832-844, 1988.

[10] Y. Freund and R.E. Schapire, "Decision-theoretic generalization of
on-line learning and an application to boosting," Journal of Comp. and
System Sci., vol. 55, no. 1, pp. 119-139, 1997.

[11] R. Polikar, L. Udpa, S. Udpa, V. Honavar, "Learn++: An incremental
learning algorithm for supervised neural networks," IEEE Trans. Sys-
tems, Man and Cybernetics, vol. 31, pp. 497-508, 2001.

[12] S. Krause and R. Polikar, "An Ensemble of Classifiers Approach for
the Missing Feature Problem," Int. Joint Conf: on Neural Networks,
2003, 553-556.

[13] P.K. Sharpe, R.J. Solly, "Dealing with missing values in neural net-
work-based diagnostic systems," Neural Computing and Applications,
vol. 3, pp. 73-77, 1995.

[14] C.L. Blake and C.J. Merz, "UCI Machine Learning Repository,"
[Online Document], Accessed 25 Nov 2006

