
An Ensemble Approach for Data Fusion with Learn++

Michael Lewitt, Robi Polikar

Electrical and Computer Engineering, Rowan University,
136 Rowan Hall, Glassboro, NJ 08028, USA.

mlewitt@ieee.org, polikar@rowan.edu

Abstract. We have recently introduced Learn++ as an incremental learning al-
gorithm capable of learning additional data that may later become available.
The strength of Learn++ lies with its ability to learn new data without forgetting
previously acquired knowledge and without requiring access to any of the pre-
viously seen data, even when the new data introduce new classes. Learn++, in-
spired in part by AdaBoost, achieves incremental learning through generating
an ensemble of classifiers for each new dataset that becomes available and then
combining them through weighted majority voting with a distribution update
rule modified for incremental learning of new classes. We have recently dis-
covered that Learn++ also provides a practical and a general purpose approach
for multisensor and/or multimodality data fusion. In this paper, we present
Learn++ as an addition to the new breed of classifier fusion algorithms, along
with preliminary results obtained on two real-world data fusion applications.

I. Introduction

A. Incremental Learning and Data Fusion

A common, and often painful, characteristic of classification algorithms is that they
require the availability of an adequate and representative set of training examples for
satisfactory generalization performance. Often, acquisition of such data is expensive
and time consuming. Consequently, it is not uncommon for the entire data to become
available in small batches over a period of time. Furthermore, the datasets acquired in
later batches may introduce instances of new classes that were not present in previous
datasets. In such settings, it is necessary to update an existing classifier in an incre-
mental fashion to accommodate new data without compromising classification per-
formance on old data. The ability of a classifier to learn under this setting is usually
referred to as incremental (also called cumulative or lifelong) learning.

Incremental learning however, is conceptually related to data fusion, as new data
may be obtained using a different set of sensors, or simply be composed of a different
set of features. In such cases, the classifier is expected to learn and integrate the novel
information content provided by new features, hence data fusion.

Ensemble or multiple classifier systems (MCS) have attracted a great deal of atten-
tion over the last decade due to their reported superiority over single classifier sys-

2 Michael Lewitt, Robi Polikar

tems on a variety of applications. MCS combines an ensemble of generally weak clas-
sifiers to take advantage of the so-called instability of the weak classifier. This insta-
bility causes the classifiers to construct sufficiently different decision boundaries for
minor modifications in their training datasets (or other parameters), causing each clas-
sifier to make different errors on any given instance. A strategic combination of these
classifiers then eliminates the individual errors, generating a strong classifier.

A rich collection of algorithms have been developed using multiple classifiers with
the general goal of improving the generalization performance of the classification sys-
tem. Using multiple classifiers for incremental learning, however, has been largely
unexplored. Learn++ was developed in response to recognizing the potential feasibil-
ity of ensemble of classifiers in solving the incremental learning problem.

In our previous work, we have shown that Learn++ is indeed capable of incremen-
tally learning from new data, without forgetting previously acquired knowledge and
without requiring access to previous data even when additional datasets introduce new
classes [1]. The general approach in Learn++, much like those in other MCS algo-
rithms, such as AdaBoost [2], is to create an ensemble of classifiers, where each clas-
sifier learns a subset of the dataset. The classifiers are then combined using weighted
majority voting [3]. Learn++ differs from other techniques, however, in the way the
data subsets are chosen to allow incremental learning of new data.

Recognizing that data fusion also involves combining different datasets consisting
of new features or modalities, we have evaluated Learn++ on two real world applica-
tions requiring data fusion. Learn++ was used to generate additional ensembles of
classifiers from datasets comprising of different features/sensors/modalities, which
were then combined using weighted majority voting. While the algorithm certainly
has much room for improvement when used in data fusion mode, the initial results
utilizing the existing version of the algorithm have been very promising. In this paper,
we describe the Learn++ algorithm and how it can be used as a general purpose ap-
proach for a variety of data fusion applications, along with our preliminary results on
two such applications.

B. Ensemble Approaches for Data Fusion

Several approaches have been developed for data fusion, for which ensemble ap-
proaches constitute a relatively new breed of algorithms. Traditional methods are
generally based on probability theory, such as the Dempster-Schafer (DS) theory of
evidence and its many variations. However, algorithms based on DS require specific
knowledge of the underlying probability distribution, which may not be readily avail-
able. The majority of these algorithms have been developed in response to the needs
of military applications, most notably target detection and tracking [4-6]. Ensemble
approaches seek to provide a fresh and a more general solution for a broader spectrum
of applications. Such approaches include simpler combination schemes such as major-
ity vote, threshold voting, averaged Bayes classifier, maximum/minimum rules, and
linear combinations of posterior probabilities [6-8]. More complex data fusion
schemes are also widely used in practice including ensemble based variations of DS,
neural network and fuzzy logic classifiers, and stacked generalization [9-14].

An Ensemble Approach for Data Fusion with Learn++ 3

A related approach to data fusion and classifier combination schemes is input
decimation, the use of feature subsets in multiple classifiers [15, 16]. In addition to
the simpler combination methods of majority vote, maximum, minimum, average, and
product, slightly more complex combination schemes such as behavior-knowledge
space or decision templates can be employed [15, 16]. Input decimation can be useful
in allowing different modalities, such as Fourier coefficients and pixel averages, to be
naturally grouped together for independent classifiers [15]. Input decimation can also
be used to lower the dimensionality of the input space by “weeding out input features
that do not carry strong discriminating information” [16]. A useful addition to this list
of classifier ensembles is a more general structure capable of using a variety of differ-
ent basic network architectures and containing the ability to combining their outputs
for (a) a stronger overall classifier, (b) a classifier capable of incremental learning,
and (c) a classifier capable of easily fusing its outputs with other ensembles.

II. Learn++

The power of Learn++ as an ensemble of classifiers approach lies in its ability to
learn incrementally additional information from new data. Specifically, for each da-
tabase that becomes available, Learn++ generates an ensemble of relatively weak
classifiers, whose outputs are combined through weighted majority voting to obtain
the final classification. The weak classifiers are trained based on a dynamically up-
dated distribution over the training data instances, where the distribution is biased to-
wards those novel instances that have not been properly learned or seen by the previ-
ous ensemble(s). The pseudocode for the Learn++ algorithm is provided in Figure 1.

For each database Dk, k=1,…,K that is submitted to Learn++, the inputs to the al-
gorithm are (i) , a sequence of mk training data instances xi
along with their correct labels yi, (ii) a weak classification algorithm BaseClassifier
to generate weak hypotheses, and (iii) an integer Tk specifying the number of classifi-
ers (hypotheses) to be generated for that database. The only requirement on the
BaseClassifier algorithm is that it can obtain a 50% correct classification perform-
ance on its own training dataset. BaseClassifier can be any supervised classifier such
as a multilayer perceptron, radial basis function, or a support vector machine, whose
weakness can be achieved by reducing their size and increasing their error goal with
respect to the complexity of the problem. Using weak classifiers allows generating
sufficiently different decision boundaries based on slightly different training datasets.
Weak classifiers also have the advantage of rapid training because, unlike stronger
classifiers, they only generate a rough approximation of the decision boundary, fur-
ther helping to prevent overfitting of the training dataset.

Learn++ starts by initializing a set of weights for the training data, w, and a distri-
bution D obtained from w, according to which a training subset TRt and a test subset
TEt are drawn at the tth iteration of the algorithm. Unless apriori information indicates
otherwise, this distribution is initially set to be uniform, giving equal probability to
each instance to be selected into the first training subset.

At each iteration t, the weights adjusted at iteration t-1 are normalized to ensuring a
legitimate distribution, Dt, is obtained (step 1). Training and test subsets are then

(){ }, | 1, ,k i i kS x y i m= = L

4 Michael Lewitt, Robi Polikar

Input: For each dataset drawn from Dk k=1,2,…,K
• Sequence of mk examples (){ }kiik miyxS ,,1|, L==
• Weak learning algorithm BaseClassifier
• Integer Tk, specifying the number of iterations

 Initialize w1(i) = D1(i)=1/mk, ∀i, i=1,2,…,mk
Do for each k=1,2,…,K:

Do for t= 1,2,…,Tk:

1. Set ∑
=

=
m

i
tt iwD

1
)(tw so that Dt is a distribution

2. Draw training TRt and testing TEt subsets from Dt.
3. Call BaseClassifier to be trained with TRt.
4. Obtain a hypothesis ht: X Y, and calculate the error of ht:

∑
≠

=
iit yxhi

tt iD
)(:

)(ε on TRt+TEt. If εt> ½ , discard ht and go to step 2.

Otherwise, compute normalized error as ()ttt εεβ −= 1 .
5. Call weighed majority voting and obtain the composite hypothesis

()∑
=∈

=
yxht

t
Yy

t
t

H
)(:

1logmaxarg β

6. Compute the error of the composite hypothesis

[]∑∑
=≠

≠==
m

i
iitt

yxHi
tt yxHiDiDE
iit 1)(:

)()()(

7. Set ()ttt EEB −= 1 , and update the weights:

[]iit yxH
tt

iitt
tt Biw

otherwise
yxHifB

iwiw ≠−
+ ×=



 =

×=)(1
1)(

,1
)(,

)()(

 Call Weighted majority voting and Output the final hypothesis:

 ()∑ ∑
= =∈

=
K

k yxht
t

Yy
final

t

xH
1)(:

1logmaxarg)(β

Fig. 1. Learn++ Algorithm

drawn according to Dt (step 2), and the weak classifier is trained with the training
subset (step 3). A hypothesis ht is obtained as the tth classifier, whose error εt is com-
puted on the entire (current) database Sk=TRt + TEt, simply by adding the distribution
weights of the misclassified instances (step 4)

∑
≠

=
iit yxhi
tt iD

)(:

)(ε (1)

The error, as defined in Equation (1), is required to be less than ½ to ensure that a
minimum reasonable performance can be expected from ht. If this is the case, the hy-
pothesis ht is accepted and the error is normalized to obtain the normalized error

10),1/(<<−= tttt βεεβ (2)

An Ensemble Approach for Data Fusion with Learn++ 5

If εt ≥ ½, then the current hypothesis is discarded, and a new training subset is se-
lected by returning to step 2. All hypotheses generated thus far are then combined us-
ing the weighted majority voting to obtain the composite hypothesis Ht (step 5).

∑
=∈

=
yxht

t
Yy

t
t

H
)(:

)/1log(maxarg β (3)

The voting scheme used by Learn++ is less than democratic, however, as the algo-
rithm chooses the class receiving the highest vote from all hypotheses, where the vot-
ing weight for each hypothesis is inversely proportional to its normalized error.
Therefore, those hypotheses with good performances are awarded a higher voting
weight. The error of the composite hypothesis is then computed in a similar fashion as
the sum of distribution weights of the instances that are misclassified by Ht (step 6)

[]∑∑
=≠

≠==
m

i
iitt

yxHi
tt yxHiDiDE

iit 1)(:
)()()((4)

where [| · |] evaluates to 1, if the predicate holds true.

10),1/(<<−= tttt BEEB (5)

The normalized composite error Bt is computed for the weight update rule (step 7):

[]iit yxH
tt

iitt
tt

Biw

otherwise
yxHifB

iwiw

≠−

+

×=



 =

×=

)(1

1

)(

,1
)(,

)()(
 (6)

Equation (6) reduces the weights of those instances that are correctly classified by
the composite hypothesis Ht, lowering their probability of being selected into the next
training subset. In effect, the weights of misclassified instances are increased relative
to the rest of the dataset. We emphasize that, unlike AdaBoost and its variations, the
weight update rule in Learn++ looks at the classification of the composite hypothesis,
not of a specific hypothesis. This weight update procedure forces the algorithm to fo-
cus more and more on instances that have not been properly learned by the ensemble.
When Learn++ is learning incrementally, the instances introduced by the new data-
base (and in particular from new classes, if applicable) are precisely those not learned
by the ensemble, and hence the algorithm quickly focuses on these instances. At any
point, a final hypothesis Hfinal can be obtained by combining all hypotheses that have
been generated thus far using the weighed majority voting rule

Simulation results of Learn++ on incremental learning using a variety of datasets

as well as comparisons to the AdaBoost algorithm and other methods of incremental
learning including ensemble of classifier approaches can be found in [1] and refer-
ences within.

∑ ∑
= =∈

=
K

k yxht tYy
final

t

xH
1)(:

1
logmaxarg)(

β
. (7)

6 Michael Lewitt, Robi Polikar

III. Simulation Results on Learn++ for Data Fusion

Similar to other classifier fusion algorithms, Learn++ seeks to acquire novel and addi-
tional information content by selectively distributing the information to individual
elements of the ensemble and then strategically combining them. While Learn++ was
originally developed as an incremental learning algorithm, its ensemble structure al-
lows it to be used in data fusion applications as well. This is because, the algorithm
does not assume that instances in consecutive databases are composed of the same
features as those seen previously. When used in data fusion mode, Learn++ seeks to
incrementally learn additional information provided by consequent databases, where
the instances of the new data still come from the same application but are composed
of different features.

We have tested Learn++ on two real world classification problems which required
data fusion. In the first, additional databases provided sensor measurements obtained
with different sensors. In the second application, additional databases were con-
structed by taking different transforms of a time domain signal. These applications,
how they relate to data fusion, and Learn++ simulation results are presented next.

A. Gas Identification Database

The gas identification database used in this study consisted of responses of quartz
crystal microbalances to twelve volatile organic compounds (VOC), including ace-
tone, acetonitrile, toluene, xylene, hexane, octane, methanol, ethanol, methyethylke-
tone, tricholoroethylene, tricholoroethane, and dicholoroethane. The task was identi-
fication of an unknown VOC from the sensor responses to that VOC. A total of 12
sensors were used, where each sensor was coated with a different polymer to alter its
sensitivity and selectivity to different VOCs. The entire data was available in three
databases S1, S2, S3, where each database consisted of responses of 4 of the 12 sensors.
More information on this database, including the experimental setup, names of the
polymers, and sample instances are available on the web [17].

Sensor responses were acquired in response to seven different concentrations for
each VOC, producing a total of 84 instances for each database. Thirty instances from
each database were used for training and the remaining 54 were used for validation.
We note that the validation data was not used by Learn++ during training. At any it-
eration t, the test subset, TRt mentioned above is a different subset of the 30 instance
training data. We have randomly mixed the sensors for four separate trials of the algo-
rithm, where the sensors were combined in mutually exclusive groups of four. For
each run, R1, R2, R3, R4, three ensembles E1, E2, E3, were generated by Learn++, one
for each database. Table 1 summarizes sensor (feature) selection for each run. For the
results shown in Table 2, each ensemble consisted of a multilayer perceptron network
with a single 8-node hidden layer and an error goal of 0.005. The individual perform-
ances indicate the generalization performance of Learn++ when trained with only four
features. Results for binary combination of ensembles indicate the generalization per-
formance when two ensembles were combined by Learn++ to effectively fuse infor-
mation from two four-feature datasets. Finally, the tertiary combination of ensembles

An Ensemble Approach for Data Fusion with Learn++ 7

show how the algorithm performed when three datasets were combined to fuse infor-
mation from three four-feature datasets.

Table 1. Ensemble features for each run were determined randomly to form three ensembles
with four mutually exculsive sets of features.

Dataset features E1 E2 E3
R1 12, 7, 6, 3 10, 4, 5, 9 8, 1, 2, 11
R2 2, 9, 4, 3 10, 11, 5, 1 6, 8, 7, 12
R3 3, 2, 10, 12 7, 5, 9, 8 1, 11, 4, 6
R4 3, 7, 12, 11 1, 8, 9, 10 4, 5, 6, 2

Table 2. Learn++ generalization performance on the validation dataset.

 Individual Performance Combined Performance
 E1 E2 E3 E1 E2 E1 E3 E2 E3 E1 E2 E3

R1 69.0% 79.8% 66.7% 82.1% 83.3% 82.1% 82.1%
R2 79.8% 79.8% 75.0% 82.1% 91.7% 83.3% 95.2%
R3 78.6% 77.4% 76.2% 76.2% 84.5% 81.0% 84.5%
R4 81.0% 82.1% 77.4% 86.9% 84.5% 90.5% 92.9%

The results indicate a general improvement in the generalization performance when

the ensembles are combined. The best performance is indicated in bold for each run.
It is interesting to note that in R1, the best performance was achieved when combining
ensembles E1 and E3. In all other cases, combining all three ensembles produced a
performance increase over performances of any individual ensemble or any binary
combination of other ensembles. Furthermore, no combination ever performed worse
than an individual ensemble, demonstrating the ability of Learn++ in fusing informa-
tion from three different datasets and acquiring additional information from each con-
secutive database.

B. Ultrasonic Weld Inspection (UWI) Database

The UWI database consists of ultrasonic scans of nuclear power plant pipes for the
purpose of distinguishing between three types of pipe wall defects. The three defects
of interest in this database are intergranular stress corrosion cracking (IGSCC), coun-
terbores, and weld roots. IGSCCs are usually found in an area immediately neighbor-
ing the welding region, known as the heat affected zone, and form a discontinuity in
the pipe that can be detected by using ultrasonic (or eddy current) techniques. The
counterbore and weld roots also appear as discontinuities in the pipe wall, but they do
not degrade the structural integrity of the pipe. These two geometric reflectors often
generate signals that are very similar to those generated by cracks, making the defect
identification a very challenging task. The cross section in Figure 2 helps illustrate
the ultrasonic testing procedure, employing 1 MHz ultrasonic transducers, used to
generate the first database analyzed in this study.

8 Michael Lewitt, Robi Polikar

Fig. 2. Ultrasonic testing of nuclear power plant pipes for identification of hazardous crack vs
non-hazardous weld root and counterbore.

The goal of the classification algorithm is to distinguish between the three different
types of pipe wall defects from the ultrasonic scans. The database consists of 1845
instances, specifically 553 crack, 615 counterbore, and 677 weld root instances. A
subset of these instances was given to the first ensemble of each run as the time do-
main information. The Fourier Transform of each instance was obtained and the
same subset as before was given to the second ensemble of each run as frequency
domain information. Finally, the discrete wavelet transform coefficients from a
Daubechies-4 mother wavelet were computed to form the third ensemble of each run
as a time-scale representation of the data. Training three ensembles of Learn++ on
the time, frequency, and time-scale data provided three modalities of information to
be fused for final classification. Table 3 shows the base classifier architecture and
number of classifiers generated for five different runs, whereas Table 4 presents the
results obtained by Learn++ on the UWI database when used in data fusion mode.

As before, combinations of ensembles performed better than individual ensembles.
In general, the combination of all three ensembles (that is combining time, frequency
and time-scale information) performed better than any individual or other binary
combination, with the exceptions of R3 and R5, where the frequency and time-scale
combination performed only slightly better then the combination of all. The results
given in Table 4 provides further promising results indicating that the algorithm is
able to combine information of different features from different datasets.

Table 3. UWI Database: Ensemble parameters for individual runs

of classifiers/ensemble
Run #

Hidden
Layer
nodes

Error
goal

Training
size E1 E2 E3

R1 8 0.1 500 15 20 23
R2 20 0.1 500 23 19 25
R3 30 0.1 500 8 8 9
R4 10 0.1 500 6 10 7
R5 20 0.1 500 10 8 9

An Ensemble Approach for Data Fusion with Learn++ 9

Table 4. Learn++ Datafusion performance on the test dataset

 Individual Performance Combined Performance
 E1 E2 E3 E1 E2 E1 E3 E2 E3 E1 E2 E3

R1 87.36% 81.41% 87.36% 89.29% 88.84% 89.77% 91.52%
R2 86.84% 80.52% 86.47% 88.69% 87.36% 90.93% 91.30%
R3 82.97% 79.03% 81.04% 85.80% 82.16% 85.80% 85.72%
R4 82.01% 78.74% 82.01% 84.24% 81.19% 84.01% 85.58%
R5 80.74% 80.30% 80.30% 86.10% 80.59% 86.62% 85.13%

IV. Discussion & Conclusions

Learn++ has been evaluated as a potential data fusion algorithm capable of combining
data from ensembles trained on separate uncorrelated features, as well as ensembles
trained on different correlated modalities such as time, frequency, and wavelet do-
main data. The algorithm relies on the weighted voting scheme inherent to Learn++
to take advantage of the synergistic knowledge acquisition property of an ensemble of
classifiers. In essence, the incremental learning algorithm is used in a data fusion set-
ing, where the consecutive databases use instances of different features.

The two datasets presented here show improved performance when the ensemble’s
information are combined, forming a joint classification. However, the datasets also
show that not all combinations are necessarily better than a single ensemble’s per-
formance. This information could be used to help select the features and modalities
for future ensembles. A related advantage of Learn++ used in a data fusion setting is
the ability of the algorithm to add or remove modalities or feature groups from the
overall system without having to retrain the complete system. The algorithm has al-
ready been shown to be capable of incremental learning [1], so the combination of in-
cremental learning of new data with the flexibility of adding or removing features
and/or modalities makes for an extremely versatile algorithm.

Further testing on the algorithm is currently underway, along with the following
future directions:
• Determine whether the algorithm can be used to obtain the optimum subset of a

large number of features
• Since the algorithm is independent of the base classifiers, determine whether using

different classifier structures particularly suited to a specific set of features may
also be combined for improved data fusion performance (Learn++ has already
demonstrated that it can work with a variety of base classifiers when running in the
incremental learning mode [18]).
In summary, the unique characteristics of the Learn++ algorithm make it a poten-

tially powerful and versatile system that can not only incrementally learn additional
knowledge, but also can combine ensembles generated by training with different fea-
tures for a diverse set of data fusion applications.

Acknowledgement: This material is based upon work supported by the National Sci-
ence Foundation under Grant No. ECS-0239090.

10 Michael Lewitt, Robi Polikar

V. References

[1] R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An incremental learning algorithm for

supervised neural networks,” IEEE Trans Systems, Man and Cybernetics, vol.31, no.4,
pp.497-508, 2001.

[2] Y. Freund and R. Schapire, “A decision theoretic generalization of online learning and an
application to boosting,” Computer and System Sciences, vol. 57, no. 1, pp. 119-139, 1997.

[3] N. Littlestone and M. Warmuth, “Weighted majority algorithm,” Information and Computa-
tion, vol. 108, pp. 212-261, 1994.

[4] D. Hall and J. Llinas, “An intrododuction to multisensor data fusion”, IEEE Proceedings,
vol. 85, no. 1, 1997.

[5] D. Hall and J. Llinas (editors), Handbook of Multisensor Data Fusion, CRC Press: Boca
Raton, FL, 2001.

[6] L. A. Klein, Sensor and Data Fusion Concepts and Applications, SPIE Press, vol. TT35:
Belingham, WA, 1999.

[7] J. Grim, J. Kittler, P. Pudil, and P. Somol, “Information analysis of multiple classifier fu-
sion,” 2nd Intl Workshop on Multiple Classifier Systems, MCS 2001, pp. 168-177.

[8] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining classifiers,” IEEE Trans on Pat-
tern Analysis and Machine Intelligence, vol. 20, no.3, pp. 226-239, 1998.

[9] L.O. Jimenez, A.M. Morales, A. Creus, “Classification of hyperdimensional data based on
feature and decision fusion approaches using projection pursuit, majority voting and neural
networks, IEEE Trans Geoscience and Remote Sensors, vol. 37, no. 3, pp 1360-1366, 1999.

[10] G.J. Briem, J.A. Benediktsson, and J.R. Sveinsson, “Use of multiple classifiers in classifi-
cation of data from multiple data sources,” Proc. of IEEE Geoscience and Remote Sensor
Symposium, vol. 2, pp. 882-884, Sydney, Australia, 2001.

[11] A. Krzyzak, C.Y. Suen, L. Xu. “Methods of combining multiple classifiers and their appli-
cations to handwriting recognition,” IEEE Trans Systems, Man, and Cybernetics, vol.22,
no.3, pp. 418-435, 1992.

[12] F.M. Alkoot.; J. Kittler. “Multiple expert system design by combined feature selection and
probability level fusion,” Proc of the 3rd Intl Conf on FUSION 2000, vol. 2, pp. 9-16, 2000.

[13] D. Wolpert, “Stacked Generalization,” Neural Networks, vol. 2, pp 241-259, 1992.
[14] B.V. Dasarathy, “Adaptive fusion processor paradigms for fusion of information acquired

at different levels of detail,” Optical Engineering, vol 35, no 3 pp 634-649, 1996.
[15] L. Kuncheva and C. Whitaker, “Feature subsets for classifier combination: an enumerative

experiment,” 2nd Intl Workshop on Multiple Classifier Systems, MCS 2001, pp. 228-237.
[16] N. Oza and K. Tumer, “Input decimation ensembles: decorrelation through dimensionality

reduction,” 2nd Intl Workshop on Multiple Classifier Systems, MCS 2001, pp. 238-247.
[17] R. Polikar, VOC Identification database available at http://engineering.eng.rowan.edu/

~polikar/RESEARCH/voc_database.doc
[18] R. Polikar, J. Byorick, S. Krause, A. Marino, M. Moreton, “Learn++: a classifier inde-

pendent incremental learning algorithm for supervised Neural Networks,” Proc. of Intl Joint
Conf on Neural Networks, vol.2, pp. 1742-1747, 2002.

