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Abstract. We have recently introduced Learn++ as an incremental learning al-
gorithm capable of learning additional data that may later become available. 
The strength of Learn++ lies with its ability to learn new data without forgetting 
previously acquired knowledge and without requiring access to any of the pre-
viously seen data, even when the new data introduce new classes. Learn++, in-
spired in part by AdaBoost, achieves incremental learning through generating 
an ensemble of classifiers for each new dataset that becomes available and then 
combining them through weighted majority voting with a distribution update 
rule modified for incremental learning of new classes. We have recently dis-
covered that Learn++ also provides a practical and a general purpose approach 
for multisensor and/or multimodality data fusion. In this paper, we present 
Learn++ as an addition to the new breed of classifier fusion algorithms, along 
with preliminary results obtained on two real-world data fusion applications. 

I. Introduction 

A. Incremental Learning and Data Fusion 

A common, and often painful, characteristic of classification algorithms is that they 
require the availability of an adequate and representative set of training examples for 
satisfactory generalization performance. Often, acquisition of such data is expensive 
and time consuming. Consequently, it is not uncommon for the entire data to become 
available in small batches over a period of time. Furthermore, the datasets acquired in 
later batches may introduce instances of new classes that were not present in previous 
datasets. In such settings, it is necessary to update an existing classifier in an incre-
mental fashion to accommodate new data without compromising classification per-
formance on old data. The ability of a classifier to learn under this setting is usually 
referred to as incremental (also called cumulative or lifelong) learning. 

Incremental learning however, is conceptually related to data fusion, as new data 
may be obtained using a different set of sensors, or simply be composed of a different 
set of features. In such cases, the classifier is expected to learn and integrate the novel 
information content provided by new features, hence data fusion.   

Ensemble or multiple classifier systems (MCS) have attracted a great deal of atten-
tion over the last decade due to their reported superiority over single classifier sys-



2      Michael Lewitt, Robi Polikar 

tems on a variety of applications. MCS combines an ensemble of generally weak clas-
sifiers to take advantage of the so-called instability of the weak classifier. This insta-
bility causes the classifiers to construct sufficiently different decision boundaries for 
minor modifications in their training datasets (or other parameters), causing each clas-
sifier to make different errors on any given instance. A strategic combination of these 
classifiers then eliminates the individual errors, generating a strong classifier. 

A rich collection of algorithms have been developed using multiple classifiers with 
the general goal of improving the generalization performance of the classification sys-
tem. Using multiple classifiers for incremental learning, however, has been largely 
unexplored. Learn++ was developed in response to recognizing the potential feasibil-
ity of ensemble of classifiers in solving the incremental learning problem.  

In our previous work, we have shown that Learn++ is indeed capable of incremen-
tally learning from new data, without forgetting previously acquired knowledge and 
without requiring access to previous data even when additional datasets introduce new 
classes [1]. The general approach in Learn++, much like those in other MCS algo-
rithms, such as AdaBoost [2], is to create an ensemble of classifiers, where each clas-
sifier learns a subset of the dataset. The classifiers are then combined using weighted 
majority voting [3]. Learn++ differs from other techniques, however, in the way the 
data subsets are chosen to allow incremental learning of new data.  

Recognizing that data fusion also involves combining different datasets consisting 
of new features or modalities, we have evaluated Learn++ on two real world applica-
tions requiring data fusion. Learn++ was used to generate additional ensembles of 
classifiers from datasets comprising of different features/sensors/modalities, which 
were then combined using weighted majority voting. While the algorithm certainly 
has much room for improvement when used in data fusion mode, the initial results 
utilizing the existing version of the algorithm have been very promising. In this paper, 
we describe the Learn++ algorithm and how it can be used as a general purpose ap-
proach for a variety of data fusion applications, along with our preliminary results on 
two such applications. 

B. Ensemble Approaches for Data Fusion  

Several approaches have been developed for data fusion, for which ensemble ap-
proaches constitute a relatively new breed of algorithms. Traditional methods are 
generally based on probability theory, such as the Dempster-Schafer (DS) theory of 
evidence and its many variations. However, algorithms based on DS require specific 
knowledge of the underlying probability distribution, which may not be readily avail-
able. The majority of these algorithms have been developed in response to the needs 
of military applications, most notably target detection and tracking [4-6]. Ensemble 
approaches seek to provide a fresh and a more general solution for a broader spectrum 
of applications. Such approaches include simpler combination schemes such as major-
ity vote, threshold voting, averaged Bayes classifier, maximum/minimum rules, and 
linear combinations of posterior probabilities [6-8]. More complex data fusion 
schemes are also widely used in practice including ensemble based variations of DS, 
neural network and fuzzy logic classifiers, and stacked generalization [9-14].   
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A related approach to data fusion and classifier combination schemes is input 
decimation, the use of feature subsets in multiple classifiers [15, 16].  In addition to 
the simpler combination methods of majority vote, maximum, minimum, average, and 
product, slightly more complex combination schemes such as behavior-knowledge 
space or decision templates can be employed [15, 16]. Input decimation can be useful 
in allowing different modalities, such as Fourier coefficients and pixel averages, to be 
naturally grouped together for independent classifiers [15].  Input decimation can also 
be used to lower the dimensionality of the input space by “weeding out input features 
that do not carry strong discriminating information” [16]. A useful addition to this list 
of classifier ensembles is a more general structure capable of using a variety of differ-
ent basic network architectures and containing the ability to combining their outputs 
for (a) a stronger overall classifier, (b) a classifier capable of incremental learning, 
and (c) a classifier capable of easily fusing its outputs with other ensembles. 

II. Learn++ 

The power of Learn++ as an ensemble of classifiers approach lies in its ability to 
learn incrementally additional information from new data.  Specifically, for each da-
tabase that becomes available, Learn++ generates an ensemble of relatively weak 
classifiers, whose outputs are combined through weighted majority voting to obtain 
the final classification.  The weak classifiers are trained based on a dynamically up-
dated distribution over the training data instances, where the distribution is biased to-
wards those novel instances that have not been properly learned or seen by the previ-
ous ensemble(s).  The pseudocode for the Learn++ algorithm is provided in Figure 1. 

For each database Dk, k=1,…,K that is submitted to Learn++, the inputs to the al-
gorithm are (i)                                        , a sequence of mk training data instances xi 
along with their correct labels yi, (ii) a weak classification algorithm BaseClassifier 
to generate weak hypotheses, and (iii) an integer Tk specifying the number of classifi-
ers (hypotheses) to be generated for that database.  The only requirement on the 
BaseClassifier algorithm is that it can obtain a 50% correct classification perform-
ance on its own training dataset. BaseClassifier can be any supervised classifier such 
as a multilayer perceptron, radial basis function, or a support vector machine, whose 
weakness can be achieved by reducing their size and increasing their error goal with 
respect to the complexity of the problem.  Using weak classifiers allows generating 
sufficiently different decision boundaries based on slightly different training datasets.  
Weak classifiers also have the advantage of rapid training because, unlike stronger 
classifiers, they only generate a rough approximation of the decision boundary, fur-
ther helping to prevent overfitting of the training dataset. 

Learn++ starts by initializing a set of weights for the training data, w, and a  distri-
bution D obtained from w, according to which a training subset TRt and a test subset 
TEt are drawn at the tth iteration of the algorithm.  Unless apriori information indicates 
otherwise, this distribution is initially set to be uniform, giving equal probability to 
each instance to be selected into the first training subset. 

At each iteration t, the weights adjusted at iteration t-1 are normalized to ensuring a 
legitimate distribution, Dt, is obtained (step 1). Training and test subsets are then 

( ){ }, | 1, ,k i i kS x y i m= = L
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Input: For each dataset drawn from Dk k=1,2,…,K 
• Sequence of mk examples ( ){ }kiik miyxS ,,1|, L==  
• Weak learning algorithm BaseClassifier 
• Integer Tk, specifying the number of iterations 

 Initialize w1(i) = D1(i)=1/mk, ∀i, i=1,2,…,mk 
Do for each k=1,2,…,K: 

Do for t= 1,2,…,Tk: 
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)(tw  so that Dt is a distribution 

2. Draw training TRt and testing TEt subsets from Dt. 
3. Call BaseClassifier to be trained with TRt. 
4. Obtain a hypothesis ht: X Y, and calculate the error of ht: 
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Fig. 1. Learn++ Algorithm  

drawn according to Dt (step 2), and the weak classifier is trained with the training 
subset (step 3).   A hypothesis ht is obtained as the tth classifier, whose error εt is com-
puted on the entire (current) database Sk=TRt + TEt, simply by adding the distribution 
weights of the misclassified instances (step 4)  

∑
≠

=
iit yxhi
tt iD

)(:

)(ε  (1) 

The error, as defined in Equation (1), is required to be less than ½ to ensure that a 
minimum reasonable performance can be expected from ht.  If this is the case, the hy-
pothesis ht is accepted and the error is normalized to obtain the normalized error 

10),1/( <<−= tttt βεεβ  (2) 
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If  εt ≥ ½, then the current hypothesis is discarded, and a new training subset is se-
lected by returning to step 2.  All hypotheses generated thus far are then combined us-
ing the weighted majority voting to obtain the composite hypothesis Ht (step 5). 

∑
=∈

=
yxht

t
Yy

t
t

H
)(:

)/1log(maxarg β  (3) 

The voting scheme used by Learn++ is less than democratic, however, as the algo-
rithm chooses the class receiving the highest vote from all hypotheses, where the vot-
ing weight for each hypothesis is inversely proportional to its normalized error.  
Therefore, those hypotheses with good performances are awarded a higher voting 
weight. The error of the composite hypothesis is then computed in a similar fashion as 
the sum of distribution weights of the instances that are misclassified by Ht (step 6) 
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where [| · |] evaluates to 1, if the predicate holds true. 
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The normalized composite error Bt is computed for the weight update rule (step 7): 
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Equation (6) reduces the weights of those instances that are correctly classified by 
the composite hypothesis Ht, lowering their probability of being selected into the next 
training subset. In effect, the weights of misclassified instances are increased relative 
to the rest of the dataset. We emphasize that, unlike AdaBoost and its variations, the 
weight update rule in Learn++ looks at the classification of the composite hypothesis, 
not of a specific hypothesis. This weight update procedure forces the algorithm to fo-
cus more and more on instances that have not been properly learned by the ensemble. 
When Learn++ is learning incrementally, the instances introduced by the new data-
base (and in particular from new classes, if applicable) are precisely those not learned 
by the ensemble, and hence the algorithm quickly focuses on these instances. At any 
point, a final hypothesis Hfinal can be obtained by combining all hypotheses that have 
been generated thus far using the weighed majority voting rule 

 
Simulation results of Learn++ on incremental learning using a variety of datasets 

as well as comparisons to the AdaBoost algorithm and other methods of incremental 
learning including ensemble of classifier approaches can be found in [1] and refer-
ences within. 
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III. Simulation Results on Learn++ for Data Fusion 

Similar to other classifier fusion algorithms, Learn++ seeks to acquire novel and addi-
tional information content by selectively distributing the information to individual 
elements of the ensemble and then strategically combining them. While Learn++ was 
originally developed as an incremental learning algorithm, its ensemble structure al-
lows it to be used in data fusion applications as well. This is because, the algorithm 
does not assume that instances in consecutive databases are composed of the same 
features as those seen previously. When used in data fusion mode, Learn++ seeks to 
incrementally learn additional information provided by consequent databases, where 
the instances of the new data still come from the same application but are composed 
of different features. 

We have tested Learn++ on two real world classification problems which required 
data fusion. In the first, additional databases provided sensor measurements obtained 
with different sensors. In the second application, additional databases were con-
structed by taking different transforms of a time domain signal. These applications, 
how they relate to data fusion, and Learn++ simulation results are presented next. 

A. Gas Identification Database 

The gas identification database used in this study consisted of responses of quartz 
crystal microbalances to twelve  volatile organic compounds (VOC), including ace-
tone, acetonitrile, toluene, xylene, hexane, octane, methanol, ethanol, methyethylke-
tone, tricholoroethylene, tricholoroethane, and dicholoroethane.  The task was identi-
fication of an unknown VOC from the sensor responses to that VOC. A total of 12 
sensors were used, where each sensor was coated with a different polymer to alter its 
sensitivity and selectivity to different VOCs. The entire data was available in three 
databases S1, S2, S3, where each database consisted of responses of 4 of the 12 sensors. 
More information on this database, including the experimental setup, names of the 
polymers, and sample instances are available on the web [17].  

Sensor responses were acquired in response to seven different concentrations for 
each VOC, producing a total of 84 instances for each database. Thirty instances from 
each database were used for training and the remaining 54 were used for validation. 
We note that the validation data was not used by Learn++ during training. At any it-
eration t, the test subset, TRt mentioned above is a different subset of the 30 instance 
training data. We have randomly mixed the sensors for four separate trials of the algo-
rithm, where the sensors were combined in mutually exclusive groups of four. For 
each run, R1, R2, R3, R4, three ensembles E1, E2, E3, were generated by Learn++, one 
for each database.  Table 1 summarizes sensor (feature) selection for each run. For the 
results shown in Table 2, each ensemble consisted of a multilayer perceptron network 
with a single 8-node hidden layer and an error goal of 0.005.  The individual perform-
ances indicate the generalization performance of Learn++ when trained with only four 
features. Results for binary combination of ensembles indicate the generalization per-
formance when two ensembles were combined by Learn++ to effectively fuse infor-
mation from two four-feature datasets. Finally, the tertiary combination of ensembles 
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show how the algorithm performed when three datasets were combined to fuse infor-
mation from three four-feature datasets.  

Table 1. Ensemble features for each run were determined randomly to form three ensembles 
with four mutually exculsive sets of features. 

Dataset features E1 E2 E3 
R1 12, 7, 6, 3 10, 4, 5, 9 8, 1, 2, 11 
R2 2, 9, 4, 3 10, 11, 5, 1 6, 8, 7, 12 
R3 3, 2, 10, 12 7, 5, 9, 8 1, 11, 4, 6 
R4 3, 7, 12, 11 1, 8, 9, 10 4, 5, 6, 2 

Table 2. Learn++ generalization performance on the validation dataset.  

 Individual Performance Combined Performance 
 E1 E2 E3 E1 E2 E1 E3 E2 E3 E1 E2 E3 

R1 69.0% 79.8% 66.7% 82.1% 83.3% 82.1% 82.1% 
R2 79.8% 79.8% 75.0% 82.1% 91.7% 83.3% 95.2% 
R3 78.6% 77.4% 76.2% 76.2% 84.5% 81.0% 84.5% 
R4 81.0% 82.1% 77.4% 86.9% 84.5% 90.5% 92.9% 

 
The results indicate a general improvement in the generalization performance when 

the ensembles are combined.  The best performance is indicated in bold for each run. 
It is interesting to note that in R1, the best performance was achieved when combining 
ensembles E1 and E3. In all other cases, combining all three ensembles produced a 
performance increase over performances of any individual ensemble or any binary 
combination of other ensembles. Furthermore, no combination ever performed worse 
than an individual ensemble, demonstrating the ability of Learn++ in fusing informa-
tion from three different datasets and acquiring additional information from each con-
secutive database. 

B. Ultrasonic Weld Inspection (UWI) Database 

The UWI database consists of ultrasonic scans of nuclear power plant pipes for the 
purpose of distinguishing between three types of pipe wall defects.  The three defects 
of interest in this database are intergranular stress corrosion cracking (IGSCC), coun-
terbores, and weld roots.  IGSCCs are usually found in an area immediately neighbor-
ing the welding region, known as the heat affected zone, and form a discontinuity in 
the pipe that can be detected by using ultrasonic (or eddy current) techniques.  The 
counterbore and weld roots also appear as discontinuities in the pipe wall, but they do 
not degrade the structural integrity of the pipe.  These two geometric reflectors often 
generate signals that are very similar to those generated by cracks, making the defect 
identification a very challenging task.  The cross section in Figure 2 helps illustrate 
the ultrasonic testing procedure, employing 1 MHz ultrasonic transducers, used to 
generate the first database analyzed in this study.   
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Fig. 2. Ultrasonic testing of nuclear power plant pipes for identification of hazardous crack vs 
non-hazardous weld root and counterbore. 

The goal of the classification algorithm is to distinguish between the three different 
types of pipe wall defects from the ultrasonic scans.  The database consists of 1845 
instances, specifically 553 crack, 615 counterbore, and 677 weld root instances.  A 
subset of these instances was given to the first ensemble of each run as the time do-
main information.  The Fourier Transform of each instance was obtained and the 
same subset as before was given to the second ensemble of each run as frequency 
domain information.  Finally, the discrete wavelet transform coefficients from a 
Daubechies-4 mother wavelet were computed to form the third ensemble of each run 
as a time-scale representation of the data.  Training three ensembles of Learn++ on 
the time, frequency, and time-scale data provided three modalities of information to 
be fused for final classification.  Table 3 shows the base classifier architecture and 
number of classifiers generated for five different runs, whereas Table 4 presents the 
results obtained by Learn++ on the UWI database when used in data fusion mode. 

As before, combinations of ensembles performed better than individual ensembles. 
In general, the combination of all three ensembles (that is combining time, frequency 
and time-scale information) performed better than any individual or other binary 
combination, with the exceptions of R3 and R5, where the frequency and time-scale 
combination performed only slightly better then the combination of all. The results 
given in Table 4 provides further promising results indicating that the algorithm is 
able to combine information of different features from different datasets. 

 

Table 3. UWI Database: Ensemble parameters for individual runs 

# of classifiers/ensemble 
Run # 

Hidden 
Layer 
nodes 

Error 
goal 

Training 
size E1 E2 E3 

R1 8 0.1 500 15 20 23 
R2 20 0.1 500 23 19 25 
R3 30 0.1 500 8 8 9 
R4 10 0.1 500 6 10 7 
R5 20 0.1 500 10 8 9 
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Table 4. Learn++ Datafusion performance on the test dataset 

 Individual Performance Combined Performance 
 E1 E2 E3 E1 E2 E1 E3 E2 E3 E1 E2 E3 

R1 87.36% 81.41% 87.36% 89.29% 88.84% 89.77% 91.52% 
R2 86.84% 80.52% 86.47% 88.69% 87.36% 90.93% 91.30% 
R3 82.97% 79.03% 81.04% 85.80% 82.16% 85.80% 85.72% 
R4 82.01% 78.74% 82.01% 84.24% 81.19% 84.01% 85.58% 
R5 80.74% 80.30% 80.30% 86.10% 80.59% 86.62% 85.13% 

 

IV. Discussion & Conclusions 

Learn++ has been evaluated as a potential data fusion algorithm capable of combining 
data from ensembles trained on separate uncorrelated features, as well as ensembles 
trained on different correlated modalities such as time, frequency, and wavelet do-
main data.  The algorithm relies on the weighted voting scheme inherent to Learn++ 
to take advantage of the synergistic knowledge acquisition property of an ensemble of 
classifiers. In essence, the incremental learning algorithm is used in a data fusion set-
ing, where the consecutive databases use instances of different features. 

The two datasets presented here show improved performance when the ensemble’s 
information are combined, forming a joint classification.  However, the datasets also 
show that not all combinations are necessarily better than a single ensemble’s per-
formance. This information could be used to help select the features and modalities 
for future ensembles. A related advantage of Learn++ used in a data fusion setting is 
the ability of the algorithm to add or remove modalities or feature groups from the 
overall system without having to retrain the complete system.  The algorithm has al-
ready been shown to be capable of incremental learning [1], so the combination of in-
cremental learning of new data with the flexibility of adding or removing features 
and/or modalities makes for an extremely versatile algorithm. 

Further testing on the algorithm is currently underway, along with the following 
future directions: 
• Determine whether the algorithm can be used to obtain the optimum subset of a 

large number of features 
• Since the algorithm is independent of the base classifiers, determine whether using 

different classifier structures particularly suited to a specific set of features may 
also be combined for improved data fusion performance (Learn++ has already 
demonstrated that it can work with a variety of base classifiers when running in the 
incremental learning mode [18]).  
In summary, the unique characteristics of the Learn++ algorithm make it a poten-

tially powerful and versatile system that can not only incrementally learn additional 
knowledge, but also can combine ensembles generated by training with different fea-
tures for a diverse set of data fusion applications. 
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