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Abstract. Support Vector Machines (SVMs) have been successfully applied to 
solve a large number of classification and regression problems. However, 
SVMs suffer from the catastrophic forgetting phenomenon, which results in 
loss of previously learned information. Learn++ have recently been introduced 
as an incremental learning algorithm. The strength of Learn++ lies in its ability 
to learn new data without forgetting previously acquired knowledge and with-
out requiring access to any of the previously seen data, even when the new data 
introduce new classes. To address the catastrophic forgetting problem and to 
add the incremental learning capability to SVMs, we propose using an ensem-
ble of SVMs trained with Learn++. Simulation results on real-world and bench-
mark datasets suggest that the proposed approach is promising. 

1   Introduction 

Support Vector Machines (SVMs) have enjoyed a remarkable success as effective and 
practical tools for a broad range of classification and regression applications [1-2]. As 
with any type of classifier, the performance and accuracy of SVMs rely on the avail-
ability of a representative set of training dataset. In many practical applications, how-
ever, acquisition of such a representative dataset is expensive and time consuming. 
Consequently, such data often become available in small and separate batches at dif-
ferent times. In such cases, a typical approach is combining new data with all previ-
ous data, and training a new classifier from scratch. In other words, such scenarios 
require a classifier to be trained and incrementally updated, where the classifier needs 
to learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. Learning new information with-
out forgetting previously acquired knowledge, however, raises the stability–plasticity 
dilemma [3]. A completely stable classifier can retain knowledge, but cannot learn 
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new information, whereas a completely plastic classifier can instantly learn new in-
formation, but cannot retain previous knowledge. The approach generally followed 
for learning from new data involves discarding the existing classifier, combining the 
old and the new data and training a new classifier from scratch using the aggregate 
data. This approach, however, results in catastrophic forgetting (also called unlearn-
ing) [4], which can be defined as the inability of the system to learn new patterns 
without forgetting previously learned ones. Methods to adress this problem include 
retraining the classifier on a selection of past or new data points generated from the 
problem space. However, this approach is unfeasible if previous data are no longer 
available. 

Such problems can be best addressed through incremental learning, defined as the 
process of extracting new information without losing prior knowledge from an 
additional dataset that later becomes available. Various definitions and interpretations 
of incremental learning can be found in [6] and references within. For the purposes of 
this paper, we define an incremental learning algorithm as one that meets the follow-
ing demanding criteria [5,6]:  

1. be able to learn additional information from new data. 
2. not require access to the original data used to train the existing classifier. 
3. preserve previously acquired knowledge (that is, it should not suffer from 

catastrophic forgetting). 
4. be able to accommodate new classes that may be introduced with new data. 

In this paper we describe an ensemble of classifiers approach: ensemble systems 
have attracted a great deal of attention over the last decade due to their empirical 
success over single classifier systems on a variety of applications. An ensemble of 
classifiers system is a set of classifiers whose individual decisions are combined in 
some way to obtain a meta classifier. One of the most active areas of research in su-
pervised learning has been to study methods for constructing good ensembles of clas-
sifiers. The main discovery is that ensembles are often more accurate than the indi-
vidual classifiers that make them up. A rich collection of algorithms have been devel-
oped using multiple classifiers, such as AdaBoost [7] and its many variations, with the 
general goal of improving the generalization performance of the classification system. 
Using multiple classifiers for incremental learning, however, has been largely  
unexplored. Learn++, in part inspired by AdaBoost, was developed in response to 
recognizing the potential feasibility of ensemble of classifiers in solving the incre-
mental learning problem. Learn++ was initially introduced in [5] as an incremental 
learning algorithm for MLP type networks. A more versatile form of the algorithm 
was presented in [6] for all supervised classifiers. 

Since SVMs are stable classifiers and use the global partitioning (global learning) 
technique, they are also susceptible to the catastrophic forgetting problem [8]. The 
SVMs optimise the positioning of the hyperplanes to achieve maximum distance from 
all data samples on both sides of the hyperplane through learning. Therefore, SVMs 
are unable to learn incrementally from new data. Since training of SVMs is usually 
present as a quadratic programming problem, it is a challenging task for the large data 
sets due to the high memory requirements and slow convergence. To overcome these 
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drawbacks, various methods have been proposed for incremental SVM learning in the 
literature [9-14]. On the other hand, some studies have also been presented to further 
improve classification performance and accuracy of SVMs with ensemble methods, 
such as boosting and bagging [15-18]. In this study, we consider the ensemble based 
incremental SVM approach. The purpose of this study was to investigate whether the 
incremental learning capability can be added to SVM classifiers through the Learn++ 
algorithm, while avoiding the catastrophic forgetting problem.  

2   Learn++ 

The strength of Learn++ as an ensemble of classifiers approach lies in its ability to 
incrementally learn additional information from new data.  Specifically, for each 
dataset that becomes available, Learn++ generates an ensemble of classifiers, whose 
outputs are combined through weighted majority voting to obtain the final classifica-
tion.  Classifiers are trained based on a dynamically updated distribution over the 
training data instances, where the distribution is biased towards those novel instances 
that have not been properly learned or seen by the previous ensemble(s). The pseu-
docode for Learn++ is provided in Figure 1. 

For each dataset Dk, k=1,…,K that is submitted to Learn++, the inputs to the al-
gorithm are (i) Sk ={( xi , yi )|i = 1,...,mk}, a sequence of mk training data instances xi 
along with their correct labels yi, (ii) a classification algorithm BaseClassifier to 
generate hypotheses, and (iii) an integer Tk specifying the number of classifiers (hy-
potheses) to be generated for that dataset. The only requirement on the BaseClassifier 
is that it obtains a 50% correct classification performance on its own training dataset. 
BaseClassifier can be any supervised classifier such as a multilayer perceptron, radial 
basis function, a decision tree, or of course, a SVM.  

Learn++ starts by initializing a set of weights for the training data, w, and a distri-
bution D obtained from w, according to which a training subset TRt and a test subset 
TEt are drawn at the tth iteration of the algorithm. Unless a priori information indicates 
otherwise, this distribution is initially set to be uniform, giving equal probability to 
each instance to be selected into the first training subset. 

At each iteration t, the weights adjusted at iteration t-1 are normalized to ensure 
that a legitimate distribution, Dt, is obtained (step 1). Training and test subsets are 
drawn according to Dt (step 2), and the base classifier is trained with the training 
subset (step 3).  A hypothesis ht is obtained as the tth classifier, whose error εt is com-
puted on the entire (current) dataset Sk = TRt + TEt, simply by adding the distribution 
weights of the misclassified instances (step 4). 

∑
≠

=
iit yxhi
t iD

)(:
t )(ε  (1) 

The error, as defined in Equation (1), is required to be less than ½ to ensure that a 
minimum reasonable performance can be expected from ht. If this is the case, the hy-
pothesis ht is accepted and the error is normalized to obtain the normalized error 

βt = εt 
/(1 −εt), 0 <  βt  

< 1  (2) 
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If εt ≥ ½, then the current hypothesis is discarded, and a new training subset is  
selected by returning to step 2.  All hypotheses generated so far are then combined  
using the weighted majority voting to obtain the composite hypothesis Ht  (step 5).  
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The weighted majority voting scheme allows the algorithm to choose the class  
receiving the highest vote from all hypotheses, where the voting weight for each hy-
pothesis is inversely proportional to its normalized error. Therefore, those hypotheses 
with good performances are awarded a higher voting weight. The error of the com-
posite hypothesis is then computed in a similar fashion as the sum of distribution 
weights of the instances that are misclassified by Ht (step 6): 

[ ]∑∑
=≠

≠==
m

i
iit

yxHi
t yxHiDiDΕ t

iit

t

1)(:
|)(|)()(  (4) 

where [|·|] evaluates to 1, if the predicate holds true.  

 
Input: For each dataset drawn from Dk k=1,2,…,K   

• Sequence of m examples Sk={(xi,yi) " i=1,…,mk}. 
• Learning algorithm BaseClassifier.  
• Integer Tk, specifying the number of iterations. 
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2. Choose training TRt and testing TEt subsets from Dt.  
3. Call WeakLearn, providing it with TRt. 
4. Obtain a hypothesis ht : X " Y, and calculate the error of 
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                         discard ht and go to step 2. Otherwise, compute normalized error asβt=εt / (1-εt).  
5. Call weighted majority voting and obtain the composite hypothesis  
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6. Compute the error of the composite hypothesis  
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Fig. 1. The Learn++ Algorithm 
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The normalized composite error is then computed  

Bt = Et /(1 − Et ),  0 < Bt <1  (5) 

to be used in the weight update rule (step 7) of Equation (6). This rule reduces the 
weights of those instances that are correctly classified by the composite hypothesis Ht, 
lowering their probability of being selected into the next training subset. 
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In effect, the weights of misclassified instances are increased relative to the rest of 
the dataset. We emphasize that, unlike AdaBoost and its variations, the weight update 
rule in Learn++ looks directly at the classification of the composite hypothesis (that is, 
the ensemble), not that of a specific hypothesis. This weight update procedure forces 
the algorithm to focus more and more on instances that have not been properly 
learned by the ensemble. When Learn++ is learning incrementally, the instances intro-
duced by the new dataset (and in particular from new classes, if applicable) are pre-
cisely those not learned by the ensemble, and hence the algorithm quickly focuses on 
these instances. At any point, a final hypothesis Hfinal can be obtained by combining 
all hypotheses that have been generated so far using the weighted majority voting 
rule. 
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Simulation results of Learn++ on incremental learning with MLPs used as base 
classifiers on a variety of datasets as well as comparisons to AdaBoost and other 
methods of incremental learning can be found in [6] and references within.   

3   SVM Classifiers 

Support vector machines (SVMs) have been successfully employed in a number of 
real world problems [1-2]. They directly implement the principle of structural risk 
minimization [1] and work by mapping the training points into a high dimensional 
feature space, where a separating hyperplane (w, b) is found by maximizing the dis-
tance from the closest data points (boundary-optimization). Given a set of training 
samples S={(xi,yi) " i=1,…,m}, where xi∈Rn are input patterns, yi ∈ {+1, −1} are class 
labels for a 2-class problem, SVMs attempt to find a classifier h(x), which minimizes 
the expected misclassification rate. A linear classifier h(x) is a hyperplane, and can be 
represented as h(x) = sign(wTx+b). The optimal SVM classifier can then be found by 
solving a convex quadratic optimization problem: 

∑
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where b is the bias, w is weight vector, and C is the regularization parameter, used to 
balance the classifier’s complexity and classification accuracy on the training set S. 
Simply replacing the involved vector inner-product with a non-linear kernel function 
converts linear SVM into a more flexible non-linear classifier, which is the essence of 
the famous kernel trick. In this case, the quadratic problem is generally solved 
through its dual formulation:  
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where αi are the coefficients that are maximized by Lagrangian. For training samples 
xi, for which the functional margin is one (and hence lie closest to the hyperplane),    
αi > 0. Only these instances are involved in the weight vector, and hence are called the 
support vectors [2]. The non-linear SVM classification function (optimum separating 
hyperplane) is then formulated in terms of these kernels as: 
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As mentioned earlier in Learn++ algorithm, incremental learning of SVMs is based 
on the following intuition: The ensemble is obtained by retraining a single SVM using 
strategically updated distributions of the training dataset, which ensures that examples 
that are misclassified by the current ensemble have a high probability of being resam-
pled. The examples that have a high probability of error are precisely those that are 
unknown or that have not yet been used to train the previous classifiers. Distribution 
update rule is optimized for incremental learning of new data, in particular when the 
new data introduce new classes. After Tk classifiers are generated for each Dk, the 
final ensemble of SVMs is obtained by the weighted majority of all composite SVMs: 
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4   Simulation Results 

Proposed incremental learning approach for SVMs using Learn++ has been tested on 
several datasets. For brevity, we will henceforth use the term SVMLearn++ for the 
proposed approach and present results on one benchmark dataset and one real-world 
application. The benchmark dataset is the Optical Character Recognition dataset from 
UCI machine learning repository, and the real world application is a gas identification 
problem for determining one of five volatile organic compounds based on chemical 
sensor data. 

Two nonlinear SVM kernel functions were used in our experiments:  Polynomial 
and Gaussian kernel functions.  

Polynomial kernel: ( )djiji xxxxK 1,),( +=   (12) 
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RBF kernel :  ⎟
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SVM classifier parameters are the regularization constant C, and the polynomial 
degree d (for the polynomial kernel) or the RBF width σ, (for the RBF kernel func-
tion). The choice of classifier parameters is a form of model selection. Although the 
machine learning community has extensively considered model selection with SVMs, 
optimal model parameters are generally domain-specific [19]. Therefore, kernel and 
regularization parameters were selected jointly to evaluate the best model for each 
dataset. We used the cross-validation technique with 5-folds to assess SVMs with 
given kernel parameter and regularization constants. 

4.1   Optical Character Recognition Dataset 

The Optical Character Recognition (OCR) data has 10 classes with digits 0-9 and 64 
attributes. The dataset was split into four to create three training (DS1, DS2, DS3) 
and a test subsets (Test), whose distribution is given in Table 1. We evaluated the 
performance and the incremental learning ability of SVMs using Learn++ on a fixed 
number of classifiers rather than determining the number of classifiers via a validation 
set. SVMLearn++ was allowed to create seven classifiers with the addition of each 
dataset using both polynomial kernel (PolySVM) and kernel (RBFSVM), for a total of 
classifiers in three training sessions. The data distribution was deliberately made 
rather challenging, specifically designed to test the ability of proposed approach to 
learn multiple new classes at once with each additional dataset while retaining  
the knowledge of previously learned classes. In this incremental learning problem, 
instances from only six of the ten classes are present in each subsequent dataset  
resulting in a rather difficult problem.  

Table 1. OCR data distribution 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
DS1 250 250 250 0 0 250 250 250 0 0 
DS2 150 0 150 250 0 150 0 150 250 0 
DS3 0 150 0 150 400 0 150 0 150 400 
Test 110 114 111 114 113 111 111 113 110 112 

Results from this test are shown in Tables 2 and 3 based on an average of 20 trials. 
The last two columns are the average overall generalization performance (Gen.) on 
test data, and the standard deviation (Std.) of the generalization performances. 

Poly SVMLearn++ was able to learn the new classes, 4 and 9, only poorly after they 
were first introduced in DS2 but able to learn them rather well, when further trained 
with these classes in DS3. However, it performs rather well on classes 5 and 10 after 
they are first introduced in DS3. RBF SVMLearn++ was able to learn the classes 4 
and 9, only poorly when they were introduced in DS2 but able to learn them rather 
well, when further trained with these classes in DS3. Similarly, it performs rather 
poorly on classes 5 and 10 after they are first introduced in DS3, though it is reason-
able to expect that it would do well on these classes with additional training. 
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Table 2. SVMLearn++ with polynomial kernel (degree = 3, C = 1) results on OCR dataset  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 99% - - 100%  100% 99% - -  %60 0.07% 
DS2 99% 100% 99% 17%  - 100%  100% 99% 21%  -  %63 2.37% 
DS3 99% 100% 99% 94% 84% 100% 100% 99% 91% 94% %78 2.32% 

Table 3. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98%  100%  99%  - - %60 0.03%  
DS2 99% 73% 100% 44% - 98%  68%  99%  47% -  %63 1.54%  
DS3 99% 100% 100% 93% 14% 97%  100%  99%  90%  13% %80 4.17%  

The generalization performance of Poly and RBF SVMLearn++ is computed on the 
entire test data which included instances from all classes. This is why the generaliza-
tion performance is only around 60% after the first training session, since the  
algorithms had seen only six of the 10 classes by that time. Both Poly and RBF 
SVMLean++ exhibit the ability of learning incrementally with a final overall generali-
zation performance of 78-80% after new datasets are introduced.  

4.2   Volatile Organic Compounds Dataset  

The Volatile Organic Compounds (VOC) dataset is from a real world application that 
consists of 5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes 
coming from six (quartz crystal microbalance type) chemical gas sensors. The dataset 
was divided into three training and a test dataset. The distribution of the data is given 
in Table 4, where a new class was introduced with each dataset. 

 Table 4. VOC data distribution  

Class C1 C2 C3 C4 C5 
DS1 20 0 20 0 40 
DS2 10 25 10 0 10 
DS3 10 15 10 40 10 
Test 24 24 24 40 52 

Again, SVMLearn++ was incrementally trained with three subsequent training data-
sets. In this experiment, Poly and RBF SVMLearn++ was allowed to generate as many 
classifiers as necessary to obtain their maximum performance. The number of classi-
fiers generated were 5, 10, 18 (a total of 33 classifiers to achieve their best perform-
ance) for SVM classifiers with polynomial kernel (PolySVM) and RBF kernel 
(RBFSVM) in three training sessions. Results from this test are shown in Tables 5 and 
6 based on average of 30 trials. 
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Table 5. SVMLearn++ with polynomial kernel (degree = 3, C = 100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std 
DS1 92% -  88% -  100%  %58 1.21% 
DS2 98% 91% 94% -  97% %72 1.29% 
DS3 96% 96% 98% 78% 76% %85 7.29% 

Table 6. SVMLearn++ with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1 91% -  95% - 99%  %58 1.62% 
DS2 97% 91%  81% - 95%  %70 1.84% 
DS3 93% 99%  94% 68% 76%  %83 8.19% 

The generalization performance of Poly and RBF SVMLearn++ on the test dataset 
gradually improved from 58% to 83-85% as new data were introduced, demonstrating 
its incremental learning capability even when instances of new classes are introduced 
in subsequent training sessions. 

5   Conclusions 

In this paper, we have shown that the SVM classifiers can in fact be equipped with the 
incremental learning capability, to address the catastrophic forgetting problem. SVM 
ensembles generated with Learn++ learning rule (SVMLearn++) are capable of learning 
new information provided by subsequent datasets, including new knowledge provided 
by instances of previously unseen classes. Some knowledge is indeed forgotten while 
new information is being learned; however, this appears to be mild, as indicated by 
the steady improvement in the generalization performance. SVMLearn++ with two 
different kernel functions has been tested on one real world dataset and one bench-
mark dataset. The results demonstrate that SVMLearn++ work rather well in a variety 
of applications. 

Learn++ suffers from the inherent “out-voting” problem when asked to learn new 
classes, which causes it to generate an unnecessarily large number of classifiers [20]. 
Therefore, in future work, we will test the modified version of Learn++, called 
Learn++.MT that attempts to reduce the number of classifiers generated. 
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