

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 246–256, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Ensemble of SVMs for Incremental Learning

Zeki Erdem1,4, Robi Polikar2, Fikret Gurgen3, and Nejat Yumusak4

1 TUBITAK Marmara Research Center, Information Technologies Institute,
41470 Gebze - Kocaeli, Turkey

zeki.erdem@bte.mam.gov.tr
2 Rowan University, Electrical and Computer Engineering Department,

210 Mullica Hill Rd., Glassboro, NJ 08028, USA
polikar@rowan.edu

3 Bogazici University, Computer Engineering Department,
Bebek, 80815 Istanbul, Turkey
gurgen@boun.edu.tr

4 Sakarya University, Computer Engineering Department,
Esentepe, 54187 Sakarya, Turkey

nyumusak@sakarya.edu.tr

Abstract. Support Vector Machines (SVMs) have been successfully applied to
solve a large number of classification and regression problems. However,
SVMs suffer from the catastrophic forgetting phenomenon, which results in
loss of previously learned information. Learn++ have recently been introduced
as an incremental learning algorithm. The strength of Learn++ lies in its ability
to learn new data without forgetting previously acquired knowledge and with-
out requiring access to any of the previously seen data, even when the new data
introduce new classes. To address the catastrophic forgetting problem and to
add the incremental learning capability to SVMs, we propose using an ensem-
ble of SVMs trained with Learn++. Simulation results on real-world and bench-
mark datasets suggest that the proposed approach is promising.

1 Introduction

Support Vector Machines (SVMs) have enjoyed a remarkable success as effective and
practical tools for a broad range of classification and regression applications [1-2]. As
with any type of classifier, the performance and accuracy of SVMs rely on the avail-
ability of a representative set of training dataset. In many practical applications, how-
ever, acquisition of such a representative dataset is expensive and time consuming.
Consequently, such data often become available in small and separate batches at dif-
ferent times. In such cases, a typical approach is combining new data with all previ-
ous data, and training a new classifier from scratch. In other words, such scenarios
require a classifier to be trained and incrementally updated, where the classifier needs
to learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. Learning new information with-
out forgetting previously acquired knowledge, however, raises the stability–plasticity
dilemma [3]. A completely stable classifier can retain knowledge, but cannot learn

 Ensemble of SVMs for Incremental Learning 247

new information, whereas a completely plastic classifier can instantly learn new in-
formation, but cannot retain previous knowledge. The approach generally followed
for learning from new data involves discarding the existing classifier, combining the
old and the new data and training a new classifier from scratch using the aggregate
data. This approach, however, results in catastrophic forgetting (also called unlearn-
ing) [4], which can be defined as the inability of the system to learn new patterns
without forgetting previously learned ones. Methods to adress this problem include
retraining the classifier on a selection of past or new data points generated from the
problem space. However, this approach is unfeasible if previous data are no longer
available.

Such problems can be best addressed through incremental learning, defined as the
process of extracting new information without losing prior knowledge from an
additional dataset that later becomes available. Various definitions and interpretations
of incremental learning can be found in [6] and references within. For the purposes of
this paper, we define an incremental learning algorithm as one that meets the follow-
ing demanding criteria [5,6]:

1. be able to learn additional information from new data.
2. not require access to the original data used to train the existing classifier.
3. preserve previously acquired knowledge (that is, it should not suffer from

catastrophic forgetting).
4. be able to accommodate new classes that may be introduced with new data.

In this paper we describe an ensemble of classifiers approach: ensemble systems
have attracted a great deal of attention over the last decade due to their empirical
success over single classifier systems on a variety of applications. An ensemble of
classifiers system is a set of classifiers whose individual decisions are combined in
some way to obtain a meta classifier. One of the most active areas of research in su-
pervised learning has been to study methods for constructing good ensembles of clas-
sifiers. The main discovery is that ensembles are often more accurate than the indi-
vidual classifiers that make them up. A rich collection of algorithms have been devel-
oped using multiple classifiers, such as AdaBoost [7] and its many variations, with the
general goal of improving the generalization performance of the classification system.
Using multiple classifiers for incremental learning, however, has been largely
unexplored. Learn++, in part inspired by AdaBoost, was developed in response to
recognizing the potential feasibility of ensemble of classifiers in solving the incre-
mental learning problem. Learn++ was initially introduced in [5] as an incremental
learning algorithm for MLP type networks. A more versatile form of the algorithm
was presented in [6] for all supervised classifiers.

Since SVMs are stable classifiers and use the global partitioning (global learning)
technique, they are also susceptible to the catastrophic forgetting problem [8]. The
SVMs optimise the positioning of the hyperplanes to achieve maximum distance from
all data samples on both sides of the hyperplane through learning. Therefore, SVMs
are unable to learn incrementally from new data. Since training of SVMs is usually
present as a quadratic programming problem, it is a challenging task for the large data
sets due to the high memory requirements and slow convergence. To overcome these

248 Z. Erdem et al.

drawbacks, various methods have been proposed for incremental SVM learning in the
literature [9-14]. On the other hand, some studies have also been presented to further
improve classification performance and accuracy of SVMs with ensemble methods,
such as boosting and bagging [15-18]. In this study, we consider the ensemble based
incremental SVM approach. The purpose of this study was to investigate whether the
incremental learning capability can be added to SVM classifiers through the Learn++
algorithm, while avoiding the catastrophic forgetting problem.

2 Learn++

The strength of Learn++ as an ensemble of classifiers approach lies in its ability to
incrementally learn additional information from new data. Specifically, for each
dataset that becomes available, Learn++ generates an ensemble of classifiers, whose
outputs are combined through weighted majority voting to obtain the final classifica-
tion. Classifiers are trained based on a dynamically updated distribution over the
training data instances, where the distribution is biased towards those novel instances
that have not been properly learned or seen by the previous ensemble(s). The pseu-
docode for Learn++ is provided in Figure 1.

For each dataset Dk, k=1,…,K that is submitted to Learn++, the inputs to the al-
gorithm are (i) Sk ={(xi , yi)|i = 1,...,mk}, a sequence of mk training data instances xi
along with their correct labels yi, (ii) a classification algorithm BaseClassifier to
generate hypotheses, and (iii) an integer Tk specifying the number of classifiers (hy-
potheses) to be generated for that dataset. The only requirement on the BaseClassifier
is that it obtains a 50% correct classification performance on its own training dataset.
BaseClassifier can be any supervised classifier such as a multilayer perceptron, radial
basis function, a decision tree, or of course, a SVM.

Learn++ starts by initializing a set of weights for the training data, w, and a distri-
bution D obtained from w, according to which a training subset TRt and a test subset
TEt are drawn at the tth iteration of the algorithm. Unless a priori information indicates
otherwise, this distribution is initially set to be uniform, giving equal probability to
each instance to be selected into the first training subset.

At each iteration t, the weights adjusted at iteration t-1 are normalized to ensure
that a legitimate distribution, Dt, is obtained (step 1). Training and test subsets are
drawn according to Dt (step 2), and the base classifier is trained with the training
subset (step 3). A hypothesis ht is obtained as the tth classifier, whose error εt is com-
puted on the entire (current) dataset Sk = TRt + TEt, simply by adding the distribution
weights of the misclassified instances (step 4).

∑
≠

=
iit yxhi
t iD

)(:
t)(ε (1)

The error, as defined in Equation (1), is required to be less than ½ to ensure that a
minimum reasonable performance can be expected from ht. If this is the case, the hy-
pothesis ht is accepted and the error is normalized to obtain the normalized error

βt = εt
/(1 −εt), 0 < βt

< 1 (2)

 Ensemble of SVMs for Incremental Learning 249

If εt ≥ ½, then the current hypothesis is discarded, and a new training subset is
selected by returning to step 2. All hypotheses generated so far are then combined
using the weighted majority voting to obtain the composite hypothesis Ht (step 5).

()∑
=∈

=
yxht

t
Yy

t
t

H
)(:

1logmaxarg β (3)

The weighted majority voting scheme allows the algorithm to choose the class
receiving the highest vote from all hypotheses, where the voting weight for each hy-
pothesis is inversely proportional to its normalized error. Therefore, those hypotheses
with good performances are awarded a higher voting weight. The error of the com-
posite hypothesis is then computed in a similar fashion as the sum of distribution
weights of the instances that are misclassified by Ht (step 6):

[]∑∑
=≠

≠==
m

i
iit

yxHi
t yxHiDiDΕ t

iit

t

1)(:
|)(|)()((4)

where [|·|] evaluates to 1, if the predicate holds true.

Input: For each dataset drawn from Dk k=1,2,…,K

• Sequence of m examples Sk={(xi,yi) " i=1,…,mk}.
• Learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations.
Initialize)()(11 iDiw = = kk miim ,,2,1 , ,1 L=∀

Do for each k=1,2,…,K:
Do for t = 1,2,...,Tk:

1. Set Dt ∑
=

=
m

i
tt iw

1
)(w so that Dt is a distribution.

2. Choose training TRt and testing TEt subsets from Dt.
3. Call WeakLearn, providing it with TRt.
4. Obtain a hypothesis ht : X " Y, and calculate the error of

∑
≠

=
iit yxhi
tt iDh

)(:
t)(: ε on Sk = TRt + TEt. If εt > ½, set t = t – 1,

 discard ht and go to step 2. Otherwise, compute normalized error asβt=εt / (1-εt).
5. Call weighted majority voting and obtain the composite hypothesis

 ()∑
=∈

=
yxht

t
Yy

t
t

H
)(:

1logmaxarg β

6. Compute the error of the composite hypothesis

 []∑∑
=≠

≠==
m

i
iit

yxHi
t yxHiDiDΕ t

iit

t

1)(:
|)(|)()(

7. Set Bt = Et/(1-Et), and update the weights:

[]|)(|1)(

 , 1

)(,
)()(1

iit
ttt

yxH
t

iitt Biw
otherwise

yxH ifB
iwiw ≠−×=

⎩
⎨
⎧ =

×=+

 Call weighted majority voting and Output the final hypothesis:

 ∑ ∑
= =∈

=
K

k yxht tYy
final

t

xH
1)(:

1
logmaxarg)(

β

Fig. 1. The Learn++ Algorithm

250 Z. Erdem et al.

The normalized composite error is then computed

Bt = Et /(1 − Et), 0 < Bt <1 (5)

to be used in the weight update rule (step 7) of Equation (6). This rule reduces the
weights of those instances that are correctly classified by the composite hypothesis Ht,
lowering their probability of being selected into the next training subset.

[]|)(|1)(
 , 1

)(,
)()(1

iit
ttt

yxH
t

iitt Biw
otherwise

yxH ifB
iwiw ≠−×=

⎩
⎨
⎧ =

×=+ (6)

In effect, the weights of misclassified instances are increased relative to the rest of
the dataset. We emphasize that, unlike AdaBoost and its variations, the weight update
rule in Learn++ looks directly at the classification of the composite hypothesis (that is,
the ensemble), not that of a specific hypothesis. This weight update procedure forces
the algorithm to focus more and more on instances that have not been properly
learned by the ensemble. When Learn++ is learning incrementally, the instances intro-
duced by the new dataset (and in particular from new classes, if applicable) are pre-
cisely those not learned by the ensemble, and hence the algorithm quickly focuses on
these instances. At any point, a final hypothesis Hfinal can be obtained by combining
all hypotheses that have been generated so far using the weighted majority voting
rule.

∑ ∑
= =∈

=
K

k yxht tYy
final

t

xH
1)(:

1
logmaxarg)(

β
 (7)

Simulation results of Learn++ on incremental learning with MLPs used as base
classifiers on a variety of datasets as well as comparisons to AdaBoost and other
methods of incremental learning can be found in [6] and references within.

3 SVM Classifiers

Support vector machines (SVMs) have been successfully employed in a number of
real world problems [1-2]. They directly implement the principle of structural risk
minimization [1] and work by mapping the training points into a high dimensional
feature space, where a separating hyperplane (w, b) is found by maximizing the dis-
tance from the closest data points (boundary-optimization). Given a set of training
samples S={(xi,yi) " i=1,…,m}, where xi∈Rn are input patterns, yi ∈ {+1, −1} are class
labels for a 2-class problem, SVMs attempt to find a classifier h(x), which minimizes
the expected misclassification rate. A linear classifier h(x) is a hyperplane, and can be
represented as h(x) = sign(wTx+b). The optimal SVM classifier can then be found by
solving a convex quadratic optimization problem:

∑
=

+
m

i
i

bw
Cw

1

2

, 2

1
max ξ subject to () iii bxwy ξ−≥+ 1, and 0≥iξ (8)

 Ensemble of SVMs for Incremental Learning 251

where b is the bias, w is weight vector, and C is the regularization parameter, used to
balance the classifier’s complexity and classification accuracy on the training set S.
Simply replacing the involved vector inner-product with a non-linear kernel function
converts linear SVM into a more flexible non-linear classifier, which is the essence of
the famous kernel trick. In this case, the quadratic problem is generally solved
through its dual formulation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

==

m

i
jijiji

m

i
i xxKyybwL

11
),(

2

1
),,(αααα subject to C ≥ αi ≥ 0 and ∑

=
=

m

i
ii y

1
0α (9)

where αi are the coefficients that are maximized by Lagrangian. For training samples
xi, for which the functional margin is one (and hence lie closest to the hyperplane),
αi > 0. Only these instances are involved in the weight vector, and hence are called the
support vectors [2]. The non-linear SVM classification function (optimum separating
hyperplane) is then formulated in terms of these kernels as:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= ∑
=

m

i
jiii bxxKysignxh

1
),()(α . (10)

As mentioned earlier in Learn++ algorithm, incremental learning of SVMs is based
on the following intuition: The ensemble is obtained by retraining a single SVM using
strategically updated distributions of the training dataset, which ensures that examples
that are misclassified by the current ensemble have a high probability of being resam-
pled. The examples that have a high probability of error are precisely those that are
unknown or that have not yet been used to train the previous classifiers. Distribution
update rule is optimized for incremental learning of new data, in particular when the
new data introduce new classes. After Tk classifiers are generated for each Dk, the
final ensemble of SVMs is obtained by the weighted majority of all composite SVMs:

 ∑ ∑
= =∈

=
K

k yxht tYy
final

t

xH
1)(:

1
logmaxarg)(

β
. (11)

4 Simulation Results

Proposed incremental learning approach for SVMs using Learn++ has been tested on
several datasets. For brevity, we will henceforth use the term SVMLearn++ for the
proposed approach and present results on one benchmark dataset and one real-world
application. The benchmark dataset is the Optical Character Recognition dataset from
UCI machine learning repository, and the real world application is a gas identification
problem for determining one of five volatile organic compounds based on chemical
sensor data.

Two nonlinear SVM kernel functions were used in our experiments: Polynomial
and Gaussian kernel functions.

Polynomial kernel: ()djiji xxxxK 1,),(+= (12)

252 Z. Erdem et al.

RBF kernel : ⎟
⎠
⎞

⎜
⎝
⎛ −−= 22

2/exp),(σjiji xxxxK (13)

SVM classifier parameters are the regularization constant C, and the polynomial
degree d (for the polynomial kernel) or the RBF width σ, (for the RBF kernel func-
tion). The choice of classifier parameters is a form of model selection. Although the
machine learning community has extensively considered model selection with SVMs,
optimal model parameters are generally domain-specific [19]. Therefore, kernel and
regularization parameters were selected jointly to evaluate the best model for each
dataset. We used the cross-validation technique with 5-folds to assess SVMs with
given kernel parameter and regularization constants.

4.1 Optical Character Recognition Dataset

The Optical Character Recognition (OCR) data has 10 classes with digits 0-9 and 64
attributes. The dataset was split into four to create three training (DS1, DS2, DS3)
and a test subsets (Test), whose distribution is given in Table 1. We evaluated the
performance and the incremental learning ability of SVMs using Learn++ on a fixed
number of classifiers rather than determining the number of classifiers via a validation
set. SVMLearn++ was allowed to create seven classifiers with the addition of each
dataset using both polynomial kernel (PolySVM) and kernel (RBFSVM), for a total of
classifiers in three training sessions. The data distribution was deliberately made
rather challenging, specifically designed to test the ability of proposed approach to
learn multiple new classes at once with each additional dataset while retaining
the knowledge of previously learned classes. In this incremental learning problem,
instances from only six of the ten classes are present in each subsequent dataset
resulting in a rather difficult problem.

Table 1. OCR data distribution

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
DS1 250 250 250 0 0 250 250 250 0 0
DS2 150 0 150 250 0 150 0 150 250 0
DS3 0 150 0 150 400 0 150 0 150 400
Test 110 114 111 114 113 111 111 113 110 112

Results from this test are shown in Tables 2 and 3 based on an average of 20 trials.
The last two columns are the average overall generalization performance (Gen.) on
test data, and the standard deviation (Std.) of the generalization performances.

Poly SVMLearn++ was able to learn the new classes, 4 and 9, only poorly after they
were first introduced in DS2 but able to learn them rather well, when further trained
with these classes in DS3. However, it performs rather well on classes 5 and 10 after
they are first introduced in DS3. RBF SVMLearn++ was able to learn the classes 4
and 9, only poorly when they were introduced in DS2 but able to learn them rather
well, when further trained with these classes in DS3. Similarly, it performs rather
poorly on classes 5 and 10 after they are first introduced in DS3, though it is reason-
able to expect that it would do well on these classes with additional training.

 Ensemble of SVMs for Incremental Learning 253

Table 2. SVMLearn++ with polynomial kernel (degree = 3, C = 1) results on OCR dataset

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std.
DS1 99% 100% 99% - - 100% 100% 99% - - %60 0.07%
DS2 99% 100% 99% 17% - 100% 100% 99% 21% - %63 2.37%
DS3 99% 100% 99% 94% 84% 100% 100% 99% 91% 94% %78 2.32%

Table 3. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std.
DS1 99% 100% 100% - - 98% 100% 99% - - %60 0.03%
DS2 99% 73% 100% 44% - 98% 68% 99% 47% - %63 1.54%
DS3 99% 100% 100% 93% 14% 97% 100% 99% 90% 13% %80 4.17%

The generalization performance of Poly and RBF SVMLearn++ is computed on the
entire test data which included instances from all classes. This is why the generaliza-
tion performance is only around 60% after the first training session, since the
algorithms had seen only six of the 10 classes by that time. Both Poly and RBF
SVMLean++ exhibit the ability of learning incrementally with a final overall generali-
zation performance of 78-80% after new datasets are introduced.

4.2 Volatile Organic Compounds Dataset

The Volatile Organic Compounds (VOC) dataset is from a real world application that
consists of 5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes
coming from six (quartz crystal microbalance type) chemical gas sensors. The dataset
was divided into three training and a test dataset. The distribution of the data is given
in Table 4, where a new class was introduced with each dataset.

 Table 4. VOC data distribution

Class C1 C2 C3 C4 C5
DS1 20 0 20 0 40
DS2 10 25 10 0 10
DS3 10 15 10 40 10
Test 24 24 24 40 52

Again, SVMLearn++ was incrementally trained with three subsequent training data-
sets. In this experiment, Poly and RBF SVMLearn++ was allowed to generate as many
classifiers as necessary to obtain their maximum performance. The number of classi-
fiers generated were 5, 10, 18 (a total of 33 classifiers to achieve their best perform-
ance) for SVM classifiers with polynomial kernel (PolySVM) and RBF kernel
(RBFSVM) in three training sessions. Results from this test are shown in Tables 5 and
6 based on average of 30 trials.

254 Z. Erdem et al.

Table 5. SVMLearn++ with polynomial kernel (degree = 3, C = 100) results on VOC dataset

 C1 C2 C3 C4 C5 Gen. Std
DS1 92% - 88% - 100% %58 1.21%
DS2 98% 91% 94% - 97% %72 1.29%
DS3 96% 96% 98% 78% 76% %85 7.29%

Table 6. SVMLearn++ with RBF kernel (σ = 3, C =100) results on VOC dataset

 C1 C2 C3 C4 C5 Gen. Std.
DS1 91% - 95% - 99% %58 1.62%
DS2 97% 91% 81% - 95% %70 1.84%
DS3 93% 99% 94% 68% 76% %83 8.19%

The generalization performance of Poly and RBF SVMLearn++ on the test dataset
gradually improved from 58% to 83-85% as new data were introduced, demonstrating
its incremental learning capability even when instances of new classes are introduced
in subsequent training sessions.

5 Conclusions

In this paper, we have shown that the SVM classifiers can in fact be equipped with the
incremental learning capability, to address the catastrophic forgetting problem. SVM
ensembles generated with Learn++ learning rule (SVMLearn++) are capable of learning
new information provided by subsequent datasets, including new knowledge provided
by instances of previously unseen classes. Some knowledge is indeed forgotten while
new information is being learned; however, this appears to be mild, as indicated by
the steady improvement in the generalization performance. SVMLearn++ with two
different kernel functions has been tested on one real world dataset and one bench-
mark dataset. The results demonstrate that SVMLearn++ work rather well in a variety
of applications.

Learn++ suffers from the inherent “out-voting” problem when asked to learn new
classes, which causes it to generate an unnecessarily large number of classifiers [20].
Therefore, in future work, we will test the modified version of Learn++, called
Learn++.MT that attempts to reduce the number of classifiers generated.

Acknowledgements

This work is supported in part by the National Science Foundation under Grant No.
ECS-0239090, “CAREER: An Ensemble of Classifiers Approach for Incremental
Learning.” Z.E. would like to thank Mr. Apostolos Topalis and Mr. Michael Muhl-
baier graduate students at Rowan University, NJ, for their invaluable suggestions and
assistance.

 Ensemble of SVMs for Incremental Learning 255

References

1. V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
2. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods, Cambridge University Press, 2000.
3. S. Grossberg, “Nonlinear neural networks: principles, mechanisms and architectures,”

Neural Networks, Vol. 1, No. 1, pp. 17–61, 1988.
4. R. French, “Catastrophic forgetting in connectionist networks: Causes, Consequences and

Solutions,” Trends in Cognitive Sciences, vol. 3, no.4, pp. 128-135, 1999.
5. R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An incremental learning algorithm

for multilayer perceptrons.” Proceedings of 25th. IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. 6, pp: 3414-3417, Istanbul, Turkey,
2000.

6. R. Polikar, L. Udpa, S. Udpa, V. Honavar. “Learn++: An incremental learning algorithm
for supervised neural networks.” IEEE Transactions on Systems, Man, and Cybernetics.
Part C: Applications and Reviews, Vol. 31, No. 4, pp: 497-508, 2001.

7. Y. Freund, R. Schapire, “A decision theoretic generalization of on-line learning and an
application to boosting,” Computer and System Sciences, vol. 57, no. 1, pp. 119-139,
1997.

8. N. Kasabov, “Evolving Connectionist Systems: Methods and Applications in Bioinformat-
ics, Brain Study and Intelligent Machines”, Springer Verlag, 2002.

9. J. Platt, “Fast Training of Support Vector Machines using Sequential Minimal Optimiza-
tion”, Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, eds., MIT Press, 1998.

10. C. Domeniconi, D. Gunopulos, “Incremental Support Machine Construction”, Proceedings
of First IEEE Int. Conf. on Data Mining (ICDM 2001), pp. 589-592.

11. P. Mitra, C.A. Murthy, S.K. Pal, “Data condensation in large databases by incremental
learning with support vector machines”, Proceedings of 15th International Conference
on Pattern Recognition, Vol.2, pp:708 – 711, 3-7 Sept 2000.

12. K. Li, H.-K. Huang, “Incremental learning proximal support vector machine classifiers”,
Proceedings of International Conference on Machine Learning and Cybernetics, vol. 3,
pp:1635–1637, 4-5 November 2002.

13. J.-L. An, Z.-O. Wang, Z.-P. Ma, “An incremental learning algorithm for support vector
machine”, Proceedings of International Conference on Machine Learning and Cybernet-
ics, Vol.2, pp:1153 – 1156, 2-5 November 2003.

14. Z.-W. Li; J.-P. Zhang, J. Yang, “A heuristic algorithm to incremental support vector ma-
chine learning”, Proceedings of 2004 International Conference on Machine Learning and
Cybernetics, Vol. 3, pp:1764–1767, 26-29 Aug. 2004.

15. D. Pavlov, J. Mao, and B. Dom, Scaling-up Support Vector Machines using The Boosting
Algorithm, Proceedings of the International Conference on Pattern Recognition, Barce-
lona, Spain, September 3-7 2000, pp. 19-22.

16. G. Valentini, M. Muselli, and F. Ruffino, Cancer Recognition with Bagged Ensembles of
Support Vector Machines, Neurocomputing 56(1), (2004), pp. 461-466.

17. G. Valentini, M. Muselli, F. Ruffino, Bagged Ensembles of SVMs for Gene Expression
Data Analysis, Proceeding of the International Joint Conference on Neural Networks, Port-
land, OR, USA, July 20-24 2003, pp. 1844-1849.

256 Z. Erdem et al.

18. H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S. Y. Bang, Constructing Support Vector Ma-
chine Ensemble, Pattern Recognition 36, (2003), pp. 2757-2767.

19. K. Duan, S.S. Keerthi, A.N. Poo, Evaluation of simple performance measures for tuning
SVM hyperparameters, Neurocomputing, 51 (2003) 41-59.

20. M. Muhlbaier, A. Topalis, R. Polikar, Learn++.MT: A New Approach to Incremental
Learning, 5th Int. Workshop on Multiple Classifier Systems (MCS 2004), Springer LINS
vol. 3077 , pp. 52-61, Cagliari, Italy, June 2004.

	Introduction
	Learn++
	SVM Classifiers
	Simulation Results
	Optical Character Recognition Dataset
	Volatile Organic Compounds Dataset

	Conclusions
	Acknowledgements
	References

