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Abstract—We have previously introduced an incremental
learning algorithm Learn®*, which learns novel information
from consecutive data sets by generating an ensemble of classifiers
with each data set, and combining them by weighted majority
voting. However, Learn® ™ suffers from an inherent “outvoting”
problem when asked to learn a new class w,ew introduced by
a subsequent data set, as earlier classifiers not trained on this
class are guaranteed to misclassify wy.w instances. The collective
votes of earlier classifiers, for an inevitably incorrect decision,
then outweigh the votes of the new classifiers’ correct decision
on Wwyeyw instances—until there are enough new classifiers to
counteract the unfair outvoting. This forces Learntt to gen-
erate an unnecessarily large number of classifiers. This paper
describes LearntT.NC, specifically designed for efficient in-
cremental learning of multiple New Classes using significantly
fewer classifiers. To do so, Learnt+ .NC introduces dynamically
weighted consult and vote (DW-CAV) , a novel voting mechanism
for combining classifiers: individual classifiers consult with each
other to determine which ones are most qualified to classify a
given instance, and decide how much weight, if any, each classi-
fier’s decision should carry. Experiments on real-world problems
indicate that the new algorithm performs remarkably well with
substantially fewer classifiers, not only as compared to its prede-
cessor Learn™, but also as compared to several other algorithms
recently proposed for similar problems.

Index Terms—Consult-and-vote majority voting, incremental
learning, multiple-classifier systems.

I. INTRODUCTION

BTAINING dense and representative data sets—essential
O for proper training of a supervised classifier—is often ex-
pensive, tedious, and time consuming for many real-world ap-
plications. Hence, it is not uncommon for real-world data to
be acquired in smaller batches over time. Such scenarios re-
quire a classifier that can incrementally learn the novel infor-
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mation provided by the new data, without forgetting the previ-
ously acquired knowledge. Long term medical studies, climate
or financial data analysis applications—where data are continu-
ously obtained over several years—or any process that generates
streaming data are examples of real-world applications that can
benefit from such a classifier.

The ability of a classifier to learn under these conditions is
known as incremental learning, whose several definitions have
appeared in the literature. One of the earliest formal definitions
is Gold’s description of learning in the limit [1], which assumes
that learning continues indefinitely, and the algorithm has ac-
cess to all (potentially infinite) data generated thus far. Defini-
tions with various restrictions, such as whether the learner has
partial or no access to previous data [2]-[4], or whether new
classes or new features are introduced with additional data [5],
have also been proposed. In this work, we adopt a more gen-
eral definition as suggested by several authors [4], [6]-[8]: a
learning algorithm is incremental if, for a sequence of training
data sets (or instances), it produces a sequence of hypotheses,
where the current hypothesis describes all data that have been
seen thus far, but depends only on previous hypotheses and the
current training data. Hence, an incremental learning algorithm
must learn the new information, and retain previously acquired
knowledge, without having access to previously seen data.

This definition raises the so-called stability—plasticity
dilemma: some information will inevitably be lost to learn new
information [9]. A strictly stable classifier can preserve existing
knowledge, but cannot learn new information, whereas a strictly
plastic classifier can learn new information, but cannot retain
prior knowledge. Whereas a gradual loss may be inevitable,
sudden and complete loss of previously acquired knowledge
should be avoided [10]. Hence, the goal in incremental learning
is to learn the novel information while retaining as much of
the previous knowledge as possible. Many popular classifiers,
however, are not structurally suitable for incremental learning;
either because they are stable [such as the multilayer perceptron
(MLP), radial basis function (RBF) networks, or support vector
machines (SVM)], or because they have high plasticity and
cannot retain previously acquired knowledge, without having
access to old data (such as k-nearest neighbor).

A further complication arises if the additional data introduce
new concept classes. Not to be confused with concept drift
[11] (which refers to class definitions continuously changing in
time), introducing new classes represents a particularly hostile
and abrupt change in the underlying data distribution. These
problems are encountered often in practice, such as recognizing
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foreign characters for a handwritten text recognition system
originally trained on English characters only [12]; identifying
new types of defects in a gas-pipeline inspection system
originally trained to recognize cracks only [13]; automated
identification of additional arrhythmias with a system origi-
nally designed to detect other cardiovascular disorders [14], or
recognizing new types of obstacles for an autonomous vehicle.
Therefore, the ability to learn in these environments would be
a desirable asset for an incremental learning algorithm.

We have previously introduced such an incremental learning
algorithm, called Learn™™, which iteratively generates an en-
semble of classifiers for each data set that becomes available,
and combines them using weighted majority voting [15]. De-
spite its promising performance on a variety of applications,
Learnt™ suffers from a so-called “outvoting” problem, when
instances of a previously unseen class are introduced with the
new data. The problem is primarily due to earlier classifiers (in-
correctly) voting for instances of new classes on which they
were not trained. While Learn*™ can learn new class bound-
aries, its performance on such applications is unstable, and re-
quires generating a large number of classifiers for each new class
to override the incorrect votes cast by earlier classifiers.

In this paper, we propose Learn™t.NC, which features a
strategic voting-based ensemble combination rule that not
only provides a significant improvement in performance and
stability, but does so using substantially fewer classifiers than
its predecessor Learn™ ™. Specifically, the new voting proce-
dure treats individual classifiers as intelligent experts, where
they consult with each other to collectively determine which
classifiers have more confidence in identifying a given instance,
and dynamically set their voting weights accordingly for that
instance. For example, a classifier may determine that it has
little or no knowledge of a particular class predicted by other
classifiers, and withdraw its decision.

The rest of this paper is organized as follows. After a brief
review of related work in Section II, we explain the outvoting
problem in detail and formally introduce the Learn™ ™ NC algo-
rithm in Section III. In Section IV, we present results on syn-
thetic and real-world applications, and compare these results
to those obtained by other recent algorithms proposed for sim-
ilar applications. Concluding remarks, and the conditions under
which Learn™".NC is expected to perform well are discussed
in Section V.

II. BACKGROUND AND RELATED WORKS

A. Incremental Learning

An often-used pragmatic approach for learning from new data
is to discard the existing classifier, and retrain a new one using
all data accumulated thus far. This approach results in loss of
all previously acquired knowledge, commonly known as cata-
strophic forgetting [10]. In addition to violating the formal def-
inition of incremental learning, this approach is also undesir-
able if retraining is computationally or financially costly, and
may not even be feasible, if the original data are lost, corrupted,
discarded, or otherwise unavailable. At the other end of the
spectrum are theoretically tractable online learning algorithms,
including Winston’s seminal work [16], Littlestone’s Winnow
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[17], and their recent variations [18]-[20]. However, online al-
gorithms typically assume rather restricted forms of classifiers,
such as those that learn Boolean or linear threshold functions,
which limit their applicability [19], [20]. Lange et al. showed
that the limited learning power of such algorithms can be im-
proved if they are allowed to memorize a carefully selected
subset of the previous data [4]. Maloof et al. follow such an
approach using partial memory learning (PML), where the in-
stances memorized are the “extreme examples” that lie along
the decision boundaries [11]. A similar philosophy is also em-
ployed by so-called boundary methods, or maximum margin
methods (such as SVMs) [21], [22]. Ferrari et al. use a con-
straint optimization approach for learning new knowledge, sub-
ject to retaining the prior knowledge expressed as constraints
[23], whereas Ozawa et al. combine feature extraction and clas-
sification by using an incrementally updated principal-compo-
nent-based approach that can learn online or in batches [24].
These approaches, however, have not been designed for, nor
evaluated on incremental learning of new classes.

Rule-based systems have also been proposed, where incre-
mental learning is achieved by adding new rules to a rule base,
typically within a fuzzy inference system [8], [25], [26]. In other
approaches, incremental learning involves controlled modifica-
tion of classifier weights [27], [28], or architecture update by
growing/pruning of decision trees, nodes or clusters [29]-[31],
or both as in STAGGER [32] and hybrid decision trees [5].
These approaches evaluate local representation of current nodes,
and add new ones or update existing ones, if present ones are
not sufficient to represent the decision boundary being learned.
Such methods are usually capable of incrementally learning new
classes from new data.

Perhaps one of the most successful implementations of this
approach is (fuzzy) ARTMAP [33]. ARTMAP generates a new
cluster for each pattern that is deemed sufficiently different
from the previous ones, and then maps each cluster to a target
class. ARTMAP can learn incrementally simply by adding new
clusters corresponding to new data. However, ARTMAP suffers
from sensitivity to the selection of its vigilance parameter, to the
noise levels in the training data, and to the order in which data
are presented, as well as cluster proliferation. Various solutions,
modifying ARTMAP [10], [34]-[36], or other approaches such
as growing neural gas networks and cell structures [37] have
also been proposed.

B. Ensemble of Classifiers

We propose an alternative approach to incremental learning:
train an ensemble of classifiers for each data set that become
available, and combine their outputs using an appropriate com-
bination rule. The goal in ensemble systems is to generate a di-
verse set of classifiers, so that each realizes a slightly different
decision boundary. Classifiers then make different errors on dif-
ferent instances, and a strategic combination of these classifiers
can reduce the total error. Since its humble beginnings with such
seminal works including [38]—-[43], ensemble systems has re-
cently become an important research area [44].

Ensemble systems typically use a classifier selection or a clas-
sifier fusion paradigm [44], [45]. In classifier selection, each
classifier becomes an expert in some local area of the feature
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space. The final decision is then based on the given instance:
classifiers trained with data close to the vicinity of this instance
are given higher credit [40], [45]-[47]. In classifier fusion, clas-
sifiers are trained over the entire feature space. The ensemble
then provides a consensus opinion by combining the individual
classifier decisions, such as in bagging- [48] or boosting-type
algorithms [39], [49], [50], including Learn™ . Learn™ ™ .NC,
however, it is a hybrid algorithm that includes elements of both
classifier selection and classifier fusion.

Once the classifiers are generated, one of many classifier
combination strategies can be employed, such as voting or
algebraic combinations of posterior probabilities [43], [51],
Dempster—Shafer combination [52], decision templates [53],
or meta decision trees [54]. Recent reviews of ensemble-based
algorithms, various associated combination strategies, and their
applications can be found in [55] and [56].

Thanks to this substantial body of work, many properties
of ensemble systems, such as how they improve performance
by reducing bias and variance, are now well understood [44];
however, their feasibility in addressing the incremental learning
problem had been largely unexplored. This prompted us to
develop Learnt™ [15]. Since then, additional ensemble-based
incremental learning algorithms have been proposed, such as
online boosting [57], [58], combining single-class subnets [59],
streaming ensemble algorithms (SEAs) [60], and dynamic
weighted majority (DWM) [61]. These algorithms have not
yet been tested on incremental learning of new classes, and
their ability to perform under such settings is unknown as of
this writing (except DWM, which we implemented and com-
pared to Learn™* .NC). In fact, these algorithms are originally
proposed either for online learning of stationary concepts, or
for traditional concept-drift applications, where existing class
definitions change in time. Consequently, most concept-drift
algorithms include a forgetting mechanism, typically dis-
carding classifiers that meet/fail certain age or performance
criteria. Hence, previously acquired knowledge is gradually
and deliberately lost. Unless the forgetting mechanism can
be appropriately adjusted (as in DWM), these algorithms are
typically not suitable for learning new class information, while
retaining existing ones.

III. ENSEMBLE-BASED INCREMENTAL LEARNING

A. Learn™™ and the Outvoting Problem in
Learning New Concept Classes

Learn*™ was originally inspired in part by AdaBoost: both

algorithms sequentially generate an ensemble of classifiers,
trained with bootstrapped samples of the training data drawn
from an iteratively updated distribution. The primary difference
between the two algorithms is in the distribution update rule.
In Learn™ ™, the distribution is iteratively biased towards the
novel instances that have not been properly learned by the
current ensemble, as opposed to instances deemed difficult
by the previous classifier, as in AdaBoost [49]. Classifiers
are then combined through weighted majority voting, where
voting weights are determined by relative performance of each
classifier on training data. As new data become available,
Learn*™ generates additional ensembles of classifiers, until the
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novel information is learned. Learn™™ has several desirable
traits: it works well on a variety of real-world problems [13],
it is classifier independent [62], it is surprisingly robust to
minor changes in model parameters and to the order of data
presentation [62], it can estimate its own confidence [63], and
it can handle unbalanced data [64].

These studies have also shown that Learn*™ is capable of
learning new concept classes, albeit at a steep cost: learning new
classes requires an increasingly large number of classifiers for
each new class to be learned [15], [65]. We now realize that clas-
sifier proliferation of Learn™ ™ is an artifact of the voting pro-
cedure, and in part, the ad hoc reinitialization of the algorithm
every time a new data set arrives.

Specifically, if the problem requires incremental learning of
new classes, the weighted majority voting becomes unfairly bi-
ased against the newly introduced class. To understand the un-
derlying reason, consider an ensemble of 7' classifiers trained
on data set 8 with instances from C' classes w1, . .., wc. Later,
data set 83 becomes available, introducing instances from a new
class wc41. We generate a new ensemble, starting with classi-
fier (T + 1). During testing, any instance from wcy; will in-
evitably be misclassified into one of previously seen C' classes
by the first 1" classifiers, since these classifiers were not trained
to recognize class wc41. Therefore, any decision by the new
classifiers correctly choosing class w1 will be outvoted by the
original T classifiers, until there are enough new classifiers to
counteract the total vote of those original T classifiers. Hence, a
relatively large number of new classifiers that recognize the new
class are needed, so that their total weight can overwrite the in-
correct votes of the original classifiers. Learn™ ™ NC is designed
to address—and avoid—this issue of classifier proliferation.

The primary novelty in Learn™ ™ NC is a new classifier com-
bination strategy that allows individual classifiers to consult
with each other to determine their voting weights for each test
instance. Learn™" .NC also uses a new protocol for reinitial-
izing the algorithm when new data arrive. The Learn®™.NC
algorithm is described in detail in the next sections. Algorithmic
and theoretical details of the original Learn*™ can be found in
[15].

+

B. Learntt.NC

We start with a preview of the proposed combination rule. For
any instance, Learnt.NC asks individual classifiers to cross
reference their predictions with respect to classes on which they
were trained. Looking at the decisions of other classifiers, each
classifier decides whether its decision is in line with the classes
others are predicting, and the classes on which it was trained.
If not, the classifier reduces its vote, or possibly refrains from
voting all together. Consider the cartoon illustration in Fig. 1.
An ensemble of (four) classifiers £; are trained with instances
from classes w1, ws, and ws; and a second ensemble of (say,
two) classifiers €, are trained with instances from classes w1,
ws, w3, and a new class wy [Fig. 1(a)]. Assume that a test in-
stance from wy is then shown to all classifiers. Since £ classi-
fiers do not recognize class wy, they incorrectly choose one of
other classes, whereas €5 classifiers correctly recognize wy. €1
classifiers notice that a class they do not recognize is selected
by all £, classifiers [Fig. 1(b)]. Realizing that they have not
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Dataset 1 with classes w, 0, v,

Training 1

123

Training 2

&, - Ensemble 1 &, - Ensemble 2

Dataset 2 with classes w; w, w; w,

Testing

Fig. 1. (a). &, classifiers are trained to recognize classes w; ~ ws, whereas £, classifiers are trained with new data that also includes class w, . (b) During testing,
&, classifiers realize a class that they do not recognize; w4 is overwhelmingly chosen by £, classifiers. Hence, £, classifiers refrain from voting.

seen any data from wy, but that €5 classifiers have, £ classifiers
withhold judgment—to the extent £ classifiers are confident of
their decision. Hence, £, classifiers reduce their voting weights
proportional to the ratio of the classifiers in €5 that pick class
wy. We will refer to this ratio as the class specific confidence of
&, in predicting class wy.

Learn™ ™t .NC keeps track of which classifiers are trained on
which classes. In this example, knowing that £, classifiers have
seen class w, instances, and that £; classifiers have not, it is
reasonable to believe that £ classifiers are correct, particularly
if they overwhelmingly choose class w4 for a given instance.
To the extent €, classifiers are confident of their decision, the
voting weights of £; classifiers can therefore be reduced. Then,
&5 no longer needs a large number of classifiers: in fact, if £
classifiers agree with each other on their correct decision, then
very few classifiers will be adequate to remove any bias induced
by £1. We call this voting process dynamically weighted consult
and vote (DW-CAV).

We now describe the Learnt™ .NC algorithm in detail,
whose pseudocode and block diagram appear in Figs. 2 and
3, respectively. For the kth database that becomes available
to Learn™".NC, the inputs to the algorithm are as follows:
1) S, = {(xlv y1)> (x27 y2)7 S (ka ) ymk)}’ a sequence
of my training data instances X; along with their labels ;,
1 = 1,...,m; 2) a supervised classification algorithm Base-
Classifier; and 3) an integer T} specifying the number of
classifiers to be generated using currently available data. For
each database, the algorithm generates an ensemble of classi-
fiers, each trained on a different subset of the available training
data Si. We have used 2/3 of Sy drawn without replacement
(which adds diversity to the ensemble, compared to using the
entire data set). The specific instances used to train each clas-
sifier are drawn from a distribution D* obtained from a set of
weights w* maintained on the training data Sy. If the algorithm
is being trained on its first database (k = 1), the distribution
D* is initialized to be uniform, giving equal probability to all
instances to be selected into the first training subset TR’{. If
k > 1, then a distribution reinitialization sequence is applied as
described later in this section.

For each database, the algorithm iteratively adds 7}, classi-
fiers to the ensemble. During the ¢th iteration (for the kth data-
base), the training data weights w¥ from the previous iteration
are first normalized (step 1) to create a proper weight distribu-

tion D¥
> wi(i). 6))
=1

A (2/3) subset of S, is drawn according to Df to obtain TRLc ,
the data set used to train the tth classifier (hypothesis) 2%, using
the BaseClassifier (step 2). The error ¥ of classifier h¥ is cal-
culated on S as

d= Y Dk =Y DH) (e £ul] @

i:hf (%i)#yi

k_ .k
D; = w;

where [[-]] evaluates to 1, if the predicate is true, and zero,
otherwise.

The BaseClassifier can be any supervised classifier, whose
parameters (e.g., the size or error goal of an MLP) can be
adjusted to ensure adequate diversity, such that sufficiently
different decision boundaries are generated each time the
classifier is trained on a different training data set. However, a
meaningful minimum performance is enforced: the probability
of any classifier to produce the correct labels on a given training
data set, weighted according to the current distribution, must
be at least 1/2. If classifier outputs are class-conditionally inde-
pendent, then the overall error monotonically decreases as new
classifiers are added. Originally known as the Condorcet jury
theorem (1786) [66], this condition is necessary and sufficient
for a two-class problem (C' = 2); and it is sufficient, but not
necessary, for C' > 2.

If ef > 1/2, the algorithm deems the current classifier hF
to be too weak, discards it, and returns to step 2; otherwise, it
calculates the normalized error 3F, 0 < K < 1 (step 3) as

Br =ei/ (1—¢f). 3)
Meanwhile, the class labels of the training instances used to
generate hY are stored as CL¥ (step 4)

CLf =Yy C {wi, - we} )
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Input: For each dataset £=1,2,...,K

e Weak learning algorithm BaseClassifier.

Do for k=1,2,....K

Do for =1,2,..., Tj:

i=1

End
End

o Training data Sj, ={(x1,y1),---,(x,«,y,»),---,(xmk,y,nk )} ,x,eX;y el c{cq,...,a)c}

o Integer 7}, specifying the number of BaseClassifiers to create using Dj.

Initialize the instance weights to be uniform when new data arrive wllC (i ) = 1/ my,i=1--,m

If £#1, Set t=0 and Go to step 5 of the inner Do loop to adjust initialization weights

e
1. Set Df =w' / z w/ (i) so that D/ is a distribution.

2. Call BaseClassifier, providing it with TR,k C S, , drawn according to D/
3. Obtain a hypothesis hFX >Y,, and calculate its error S,k = Z Dtk (i ) If g,k >y,

discard A/ and go to step 2. Otherwise, compute normalized error B = & / (1-€.

4. Let CL = Y = {@,,---@.} be the class labels used in training 4/ for dataset D;.

5. Call DW-CAY to obtain the composite hypothesis H}".
Compute the error of the composite hypothesis E‘k = Z Dtk (l)

7. Set BI~EX/(1-Ef), and update the weights: Wi, (i) =w/ (i) x{

Call DW-CAY to obtain the final hypothesis, Hq1

i (%)%,

LB (e,

Btk’ ilek (Xl)zyi
1, otherwise

k

Fig. 2. Learnt*.NC algorithm.

where Y (t) is the set of concept classes represented in the
training data used to generate h*.

The DW-CAV subroutine of Learn™.NC, described below,
is called to combine all hypotheses generated thus far to obtain
the composite hypothesis HY of the ensemble (step 5). Hence,
HF represents the current knowledge retained by the entire en-
semble. The error EF of the ensemble is then computed (on all
examples of Sy) and normalized to obtain 0 < Bf < 1 (step 6)

Ef= Y Di() =Y DrG)[[Hf(x) # ui]] (5
i HF (x;)#y: i=1
Bf =Ef/(1-Ey). ©

The instance weights w} are finally updated according to the
performance of HF (step 7) by

wf+1('i) wa(z) % (Bf)l_[[Hf(xJ#%]]

k
— k() x { P

Equation (7) indicates that the distribution weights of the in-
stances correctly classified by the composite hypothesis H are
reduced by a factor of Bf(0 < BF < 1), making misclassified
instances more likely to be selected to the training subset of the
next iteration. Defining a composite hypothesis and using its en-
semble decision for distribution update constitutes a major de-
parture point from most boosting-based approaches, such as Ad-
aBoost. Those algorithms update their weight distribution based
on the performance of a single hypothesis h; generated during

if HE(x;) = yi
otherwise.

)

the previous iteration (an exception is arc-x4 [50], which we
compare to Learn™*.NC in Sections IV-B-IV-D). Using the en-
semble decision to choose the training subset of the next classi-
fier, as in Learn™ ™ .NC, greatly facilitates incremental learning
because such a procedure forces the algorithm to focus on in-
stances that have not been seen or properly learned by the cur-
rent ensemble. Instances introduced by new data, in particular,
those that belong to a new class, are precisely those instances not
yet learned by the ensemble. It can be argued that AdaBoost also
looks (albeit indirectly) at the ensemble decision, since, while
based on a single hypothesis, the distribution update is cumula-
tive. However, directly tying the distribution update to the en-
semble decision has been found to be more effective for learning
new information in our previous trials [67].

We should also note a subtle but important aspect of
Learn™ .NC: when new data become available, Learntt.NC
first reinitializes distribution D’f“ to be uniform, and then
further adjusts this distribution based on the performance of the
current ensemble on the new data. Hence, the algorithm focuses
on that portion of the new data space that has not already been
learned by previous classifiers.

C. Dynamically Weighted Consult and Vote

Learn™ ™ .NC uses a new voting procedure DW-CAV, where
classifiers examine each other’s decisions, cross reference those
decisions with the list of class labels on which each was trained,
and dynamically adjust their voting weight for each instance
(Figs. 4 and 5). The inputs to DW-CAV are as follows: 1) the
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Inputs: Training data Number of classifiers
] |
t=1 Initialize distribution
weights
(if k>1)
1 w
o Initialize —b Normalize weights,
Weights —> | obtain distribution DX
| of
e . Call BaseClassifier
Training using a subset of S,
randomly drawn from D/
| ot
® Calculate Use h/ to compute
Error error on DX
k o
& n
N @ Y -
Update @ Calculate normalized
o Variables error §and
Obtain class labels CL X
used to train h*
% boL
© Ensemble @ Call DW-CAV using
Decision S, as test data
L He
. © Compute the composite
0 Composite error (E/) and normalize (B/) =
Error ;
l Ek 1 B 1
L 4
- Update instance
(7] vl\.;p_daht; + distribution weights
eig -~
- Wik Test
Data

Y. N X
1 N
Call DW-CAV to evaluate
on test data

Evaluate Ensemble
Performance

Fig. 3. Block diagram of the Learn™+.NC algorithm.

data points to be classified; 2) classifiers h¥ and their normal-
ized errors 3F; and 3) the vector C'L¥ containing the class labels
on which h¥ have been trained. Voting weights are initialized
according to (8). Each classifier first receives a standard static
weight that is inversely proportional to its normalized error 3f:
classifiers that performed well on their training data are given
higher voting weights. Note that these initial weights are inde-
pendent of the instance x;

W} =log (1/8F). (8)

Let us represent (the ensemble of) those classifiers whose
training data included class we as E¢, those that did not as £¢,
and let Z. denote the sum of performance-based weights of all
classifiers in ¢

> X%

k t:wCGCLf

&)
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Inputs:
e Instance x, to be classified

All classifiers generated thus far
Normalized error values, ﬂ/‘.
Class labels, CL/ used in training ht.

:]og(l/ﬂ,")

Initialize classifier voting weights VKk
Calculate for each @), € {a)l yeens a)C}

o Normalization factor Z, = Z VKk
%

teeCly "
k

o Class-specific confidence ]1: (l) =

S w
it (e

ZC
If B, (i) =P, (i) =1,k #1 such that
ENE=T—>SetP,(i)=P(i)=0

(where &, is the set of classifiers that have seen class wy)

Update voting weights for instance x;
k . k .
W @)= TT (-2 ()
o, z(,‘l‘f"
Compute final (or current composite) hypothesis

H ()= argmaxz Z W (i

@< kit (x;)=a

@,

Fig. 4. DW-CAV algorithm for Learn*+.NC.

For each instance x;, we then define a preliminary class-spe-
cific confidence Pc(7) for each class we

> oy W

k t:h (xi)=w.

Pufi) = =102

(10)

P.(3) is the ratio of total weight of all classifiers that choose
class w,, to the total weight of all classifiers in £¢. The class-
specific confidence P.(%) represents the collective confidence of
& ¢ classifiers in choosing class w,. for instance x;. A high value
of P.(7), close to 1, indicates that classifiers trained to recog-
nize class w. have overwhelmingly picked class w,. Classifiers
in £z—not trained on class w.—then look at this decision of
E¢ classifiers choosing class w... £¢ classifiers then have a good
reason to believe that they are probably incorrect on x;. There-
fore, the voting weights of classifiers in £ are reduced in pro-
portion to P.(4), the class-specific confidence of ¢ classifiers
in choosing class w,

Il

ciw.¢gCLk

Wi (i) = Wk (1= Pu(i)). (11)

Note that unlike the original voting weights W[, of standard
weighted majority voting, the weights used by Learn™*.NC,
are dynamically adjusted based on the classifiers’ decision on
current instance x;.

It is worth noting a pathological worst-case condition: con-
sider an ensemble €4 = &; U &, trained on w; and ws, and
ensemble £ = £3 U &, trained on w3 and w, instances only,
with no class overlap in instances used to train two ensembles,
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Fig. 5. Block diagram of the DW-CAV algorithm.

that is, £4 N € = <. Now, given a test instance x; of say,
class wy, further assume that all £ 4 classifiers correctly iden-
tify x; as wy, and all € g classifiers misclassify x; as wy. In this
case, both P; () and P,(%) will be 1, effectively setting all voting
weights to zero. If for any instance this unlikely scenario takes
place, the class confidences are set to zero and the algorithm
returns to standard (training-performance-based) weighted ma-
jority voting.

The final output of the DW-CAV is the class for which the
sum of adjusted voting weights is the largest. At any interme-
diate iteration ¢, this represents the decision of the composite
hypothesis of the classifiers generated thus far; if ¢ = T}, it is
the decision of the entire ensemble, hence the final hypothesis

Hyinat(xi) = argmax y 3

WE(i). (12)

IV. EXPERIMENTS WITH Learnt+.NC

The properties and performance of Learn™™.NC were ob-
served through several experiments involving both synthetic and
real-world data. Its performance was also compared to that of
Learn™ ™, bagging, arc-x4, and DWM. Due to detail involved in
describing each experiment, we present results on eight exper-
iments performed on four data sets of different characteristics
and difficulty.

A. Triple Spiral Synthetic Database

This data set was used to provide a visual representation of
how quickly Learn*.NC learns a new decision boundary. For
each class ¢ = 1, 2, 3, the spiral data were generated using the
polar coordinates

0. =r+2n(c—1)/3, c=1,2,3, r € [0,2n] (13)

which were then converted to Cartesian coordinates to obtain
2-D feature vectors

X.=rcosb. Y.=rsinb,, c=1,2,3. (14)

Hﬁtal(x i)

Fig. 6. Decision boundaries generated by Learnt* (left) and Learn™+.NC
(right) with ten classifiers.

Fig. 7. Decision boundaries generated by Learnt* (left) and Learn*+.NC
(right) with 11 classifiers.

Two spirals, 200 training points each, were first generated
by randomly drawing r values from a uniform distribution in
the [0 27] interval. An ensemble was trained on the two-spiral
data, and evaluated on the entire 2-D feature space (grid of
126 x 126 = 15876) to highlight the decision boundaries.
Fig. 6 illustrates the boundaries generated by Learn™™ and
Learntt.NC, with ten classifiers (2 x 20 x 2 architecture
MLPs, 0.05 error goal) in each ensemble. The training data
are indicated as black spirals, and painted regions represent
classification over the entire feature space. Both algorithms
were able to learn the appropriate decision boundaries. In
order to simulate incremental learning of a new class, a third
spiral of 200 training points, and a fresh set of 200 points
from each of the first two spirals were used to train additional
classifiers. Fig. 7 shows the classification regions generated by
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Fig. 8. Decision boundary generated by Learn** (left) and Learn*+.NC
(right) with 24 classifiers.

TABLE I
VOC DATABASE DISTRIBUTION

Class»> ET OC TL TCE XL
A 20 20 40 0 0
S2 17 17 17 34 0
S3 17 17 19 20 72

Test 6 6 11 6 8

each algorithm after the addition of just one classifier trained
with instances from all three spirals. Learn™.NC immediately
learns the newly introduced class with only one additional
classifier, whereas Learnt™ shows no indication of a third
class. In Learn™ ™, all decisions in favor of the new class cast
by the 11th classifier (the only classifier thus far trained on the
third spiral) are outvoted by the previous ten that had to choose
one of the first two classes. In Learnt™.NC, however, the
original ten classifiers realize that the new classifier is voting
for a class they were not trained on, and withdraw their votes
on all third-spiral instances. This in turn allows quick learning
of the new class. Also note that Learn™ .NC preserves its
knowledge on the remaining feature space, through the original
ten classifiers.

With the addition of more classifiers, Learn™ eventually
demonstrates its ability to learn the newly introduced spiral.
Fig. 8 illustrates the decision regions generated by both algo-
rithms with 24 classifiers: ten trained on two spirals, and 14
trained on three spirals. Note that Learn™ ™ begins learning the
new class at the boundary of the previously learned classes. This
makes intuitive sense: individual classifiers are more likely to
disagree on instances that are near the decision boundary, al-
lowing the new classifiers avoid being outvoted by the existing
classifiers in a region where they disagree with each other. We
also note that Learn*.NC appears to resist overfitting, despite
the addition of several classifiers. A movie showing how deci-
sion boundaries change with each added classifier can be found
online [68].

+

B. Volatile Organic Compound Recognition Database

The volatile organic compound (VOC) database is generated
from a challenging real-world problem of identifying one of five
VOC:s based on the responses of six chemical sensors [69]. The
individual VOCs were ethanol (ET), octane (OC), toluene (TL),
tricholorethylene (TCE), and xylene (XL). The data set was di-
vided into four disjoint subsets: three training subsets S1 ~ S3
and a test set. The performance on this data was then compared
to that of Learn™* ™, bagging, arc-x4, and DWM on two separate
experiments, which used two separate data distributions, shown

159

TABLE II
VOC DATABASE DISTRIBUTION WITH VALIDATION SET

Class> ET OC TL TCE XL
M 20 20 40 0 0

S2 11 11 25 32 0
S3 11 11 10 10 56
Valid. 12 12 24 12 I6
Test 6 6 11 6 8

TABLE III

VOC DATA CLASS-SPECIFIC AND OVERALL GENERALIZATION PERFORMANCES
(FIXED ENSEMBLE SIZE)

Class> ET oC TL

TCE XL Gen. Perf.

T 55.6%20.8%
£ 152 60.9%+1.1%
i 65.5%+1.1%
2 TS1 84%  96%  87% 0% 0% 54.8%+0.8%
5 782 86%  94%  84%  66% 0% 64.8%+1.1%
@ 783 87% 96% 81% 85% 0% 67.5%%1.0%
. 181 55.7%20.8%

g S 152 66.7%+1.0%

1S3 68.4%+0.9%

' TS1 86% 89% 83% 0% 0% 52.9%%0.8%

§ "g TS2 86% 83% 68% 76% 0% 60.0%%1.4%

o 783 89% 87% 56% 77%  88% 76.6%%1.6%

& 78, 55.3%%0.9%
EQ 5, 67.2%+1.0%

3 1S5 82.4%+1.0%

L All algorithms use 30 classifiers, except DWM-NB, which uses 69.

in Tables I and II. In both cases, the distribution of the data was
deliberately made challenging by biasing towards the new class
instances.

In our first experiment, all algorithms were allowed to create
a fixed number of (ten) classifiers for each data set presented, for
a total of 30 MLP-type classifiers (6 x 20 x 5 architecture, 0.05
error goal). The only exception was DWM, which automatically
prunes itself to determine the ensemble size, (typically propor-
tional to the training data size). Used with its default parameter
values recommended in [61], DWM generated 69 classifiers on
this database. We note that DWM needs an online base classi-
fier (naive Bayes or decision trees is recommended in [61]), and
cannot be run with batch learning algorithms.

Table III lists class-specific and overall generalization perfor-
mances after each training session 7'Sy, where only the current
S}, was used for training (with no access to previous data sets).
All performances and 95% confidence intervals are obtained as
averages of ten independent trials of tenfold cross validation. We
make two observations from Table III. First, the generalization
performances start around 55%, as they are calculated on the test
data set that includes instances from all five classes, whereas
the ensembles have only seen instances from three classes by
the end of 1'S; (see Table I). The performances improve pro-
gressively as new data sets (and new classes) are learned by the
ensembles. Second, despite the overall improvement in perfor-
mance, Learn*™ is unable to adequately learn the new classes
with just ten classifiers. Its performance on the newly introduced
classes is poor by the end of the training session in which these
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TABLE 1V
VOC DATA CLASS-SPECIFIC AND OVERALL GENERALIZATION PERFORMANCES
(OPTIMIZED ENSEMBLE SIZE)

Class> ET ocC TL TCE XL Gen. Perf.

VOC database
1 T | T I T
1 1
I 1
i |
0.9+ \ E i
| -
8 ! 218
2 ! 218 amemm—————
- 0.8 I ws £ -
% ~E s/
o i © Sie
- Q13 (=127}
c 0T 4
© 0.7+ 3'9 ¥
o U © 1= |
o -2 oL - —_—®
. ' -
£ = '
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Number of classifiers

Fig. 9. Performance comparison on VOC data (Table I dist.) as a function of
ensemble size.

classes are first introduced, e.g., 34% on class TCE by the end
of T'S5. The performance improves, marginally, to 67% on this
class by the end of 1'S3, as more instances have been introduced
from TCE during 71'S5. However, the algorithm fails to learn
the new class (XL) introduced in 7'S3, as there are too many
previously generated classifiers that cast incorrect votes for XL.
Clearly, ten classifiers per data set were not enough for Learn™ ™
ensembles to overwrite the votes on the incorrect decision of the
earlier classifiers. Similar arguments can also be made for bag-
ging and arc-x4. DWM seems to learn new classes relatively
well, with a final performance of 76.4%, however, it had to use
a total of 69 classifiers to do so. Learn™™.NC had the best final
performance of 82.4% with 30 classifiers.

Fig. 9 illustrates the generalization performance of each algo-
rithm, as new classifiers are added to the ensemble, over 30 clas-
sifiers. DWM is not included in this plot since it required 69 clas-
sifiers. Included for comparison, however, is the performance of
Learn™™ on nonincremental learning (indicated as Learn™*.NI
in legend), obtained when all training data were provided at
once. Fig. 9 indicates that the performances of all algorithms
are identical when there is only one data set. However, as addi-
tional classes are introduced with new data sets, LearntT.NC
rapidly learns new classes, indicated by the sharp increase in
performance after adding just one classifier with each new data
set. All other algorithms trail Learn™ ™ NC in performance and
speed of recognizing new classes. Furthermore, the final per-
formance of Learn* ™ .NC closely approaches that of the nonin-
cremental ensemble performance, an unofficial upper bound for
performance that can be achieved with this database.

One can argue that arbitrarily fixing the number of classifiers
(to ten, for example, as we did above) may unfairly restrict an al-
gorithm, and prevent it from reaching its optimal performance.
We therefore allowed the algorithms to generate as many clas-
sifiers as they need to optimize their individual performances,
and then compare the number of classifiers each needs to reach
its optimum performance. The optimal number of classifiers was

55.0%+0.8%

65.8%+1.1%
80.2% +1.5%

TS ,(4.1)
75,(8.2)
TS5(18.7)

Learn**

o TS1(30) 84% 93% 87% 0% 0% 54.4%:0.8%
D 75,(46) 84% 92% 77% 88% 0% 656%+1.0%
©
0 753(8.3) 87% 94% 62% 74% 85% 783%%1.2%
. TS1(32) 54.5%+0.8%
§§ 752 (4.9) 66.3%+0.9%
TS (8.0) 78.4% +1.2%
. TS:1(16) 86% 89% 83% 0% 0% 52.9%+0.8%
2 715.(21) 86% 83% 68% 76% 0% 60.0%14%
O IS3(26) 89% 87% 56% 77% 88% 76.6%%1.6%
s TS1(45) 54.7%+0.8%
§2 75:(28) 65.3%+1.0%
4 7S83(4.0) 77.0% +1.3%

determined by generating an excessive number of classifiers and
then retaining only those required to reach the peak performance
on a separate validation data set. The data distribution used for
such an experiment is shown in Table II. The corresponding re-
sults are presented in Table IV, where the average number of
classifiers (over 10 x 10 = 100 runs) determined to be optimum
on validation data is shown in parentheses for each training ses-
sion. Recall that DWM automatically prunes itself to its optimal
size. Hence, the results given in Tables III and IV are identical
for DWM.

Table IV indicates that the overall performances of all algo-
rithms are now very close to each other at around 77%—-80%,
with little or no statistically significant differences among
them. However, the ensembles created by Learn™™ required
31 classifiers, bagging required 22, and arc-x4 required 16,
whereas Learn™ ™ NC used only 11 classifiers to reach its final
performance.

We make two additional interesting observations. First, the
optimal number of classifiers for Learnt™ (44 8+19), bagging
and arc-x4 (both 3+ 5+ 8) are actually fewer than (or similar to,
for Learn++) the 30 used in the first experiment. It is fair to ask,
then, why those ensembles were not able to learn the new classes
with larger number of classifiers (i.e., 30) in the first experiment.
Our second observation answers this question, and in fact, jus-
tifies the approach used by Learn™ ™ .NC: the number of classi-
fiers required to learn additional classes increase as new classes
are added in all algorithms—except for Learn ™ NC—where it
remains constant. These two phenomena are interrelated and are
both due to outvoting. Specifically, in the fixed ensemble exper-
iment, using ten classifiers in 7'S; meant that Learn™ ", bagging
and arc-x4 actually needed more than ten classifiers in the next
round to overwrite the incorrect votes of the first ten just so that
they can learn additional classes. Not having that many clas-
sifiers caused these classifiers to perform poorly. On the other
hand, if fewer classifiers were used during 7'S7, then similarly
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TABLE V
IMAGE-SEGMENTATION DATA DISTRIBUTION

Cl> B S F cC W P G
S1 100 100 100 0 0 0 0
S 100 100 100 200 200 0O 0
Ss 97 97 97 97 97 297 297

Test 33 33 33 33 33 33 33

TABLE VI
IMAGE-SEGMENTATION DATA DISTRIBUTION WITH VALIDATION SET

ci> B S F cC W P G

S1 100 100 100 O 0 0 0
S2 80 8 80 180 180 0 0
S3 84 84 84 84 84 264 264

Valid 33 33 33 33 33 33 33
Test 33 33 33 33 33 33 33

fewer classifiers would have been required during 7'S5 to out-
vote the classifiers of 1'S;.

Furthermore, the outvoting problem can vary heavily from
database to database. For example, consider a three-class data-
base appearing in two training sessions: 7'.S; with classes w1
and ws, and T'S> with all three classes. In the best-case scenario,
TS; will create T classifiers with relatively equal weights, and
classify w3 instances randomly as w; or wy. Therefore, for any
ws instance, (approximately) T'/2 classifiers will choose w; and
T'/2 will choose wo. Then, only T'/2+1 classifiers (with weights
roughly equal to the weights of previously generated classifiers)
would be adequate to outvote the existing classifiers. Now, con-
sider the (near) worst-case scenario: 1" classifiers are trained
during 7S, and they all classify ws instances unanimously as
w1 (or wo). If T'S; classifiers have approximately equal weights
(to those obtained in 7'Sy), then it would require 7"+ 1 classi-
fiers to outvote the existing classifiers (as opposed to 7/2 + 1
in the previous scenario). However, it could get even worse:
if the two-class problem in 7'S; is perfectly separable (hence
those T classifiers received very high weights), and the new
three-class problem in 7'Ss is inseparable (hence 7S5 classifiers
receive lower weights), substantially higher number of classi-
fiers (many more than 7" 4+ 1) will be required during T'S5 to
outvote the existing classifiers. Therefore, if for any application,
the first data set requires a large number of classifiers to be gen-
erated, and/or the additional data sets introduce a more difficult
problem, then all consecutive training sessions will necessarily
require even larger number of classifiers—hence classifier pro-
liferation. Learn™ ™ .NC completely avoids this problem.

C. Image Segmentation Database

The image segmentation database comes from the University
of California at Irvine (UCI) repository [70]. The data consist
of 2310 instances, with 19 attributes for segmenting the images
into one of seven categories: brickface (B), sky (S), foliage (F),
cement (C), window (W), path (P), and grass (G). The data set
was divided into three training subsets §; ~ S5 and a test set.
The data distribution is shown in Table V for fixed ensemble size
experiment and in Table VI for optimized-ensemble-size experi-
ment. In the first experiment, all algorithms (except DWM) gen-
erated a fixed number of ten MLPs (6 x 20 x 5 architecture, 0.05
error goal), whose test performances are shown in Fig. 10 and
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Fig. 10. Performance comparison on image data (Table V dist.) as a function
of ensemble size.

Table VII. DWM, used with its default recommended parame-
ters and naive—Bayes base classifier [61], generated a total of
352 classifiers on this database.

The performance trends are very similar to those obtained
with the VOC data set. Specifically, Learn™ ™, bagging, and
arc-x4 cannot handle new class information with ten classifiers
per data set, and could only reach a performance of mid 50%
~ 70% by the end of three training sessions. DWM was able
to reach 73.9%, but only with 352 classifiers (recall that the
number of classifiers is automatically determined in DWM).
Learn™ .NC, however, it was able to learn the new classes very
quickly, and reached a final generalization performance of 91%
using ten classifiers per data set. When allowed to train as many
classifiers to reach their optimal performances, the final per-
formances (shown in Table VIII) were similar for all four al-
gorithms. However, bagging and arc-x4 needed 20 classifiers,
Learn™™ needed 39, whereas Learn™™.NC needed only 13 to
reach those optimal performances. Note that the same outvoting
phenomenon discussed in detail above for the VOC data set is
observed on this data set as well.

D. Optical Character Recognition Database

The optical character recognition (OCR) database consists of
ten classes with 64 attributes, obtained from handwritten nu-
meric characters 0 ~ 9, digitized on an 8 x 8 grid [70]. The
database was split into five disjoint sets to create four training
subsets S7 ~ 84, and one test subset. The data distribution,
shown in Table IX, was designed to test the algorithms’ ability
to learn two new classes with each data set, while retaining pre-
vious knowledge. Similar to earlier experiments, all algorithms
(except DWM) were first asked to create a fixed number of (five)
classifiers for each data set presented, for a total of 20 MLP-type
classifiers (64 x 20 x 10 architecture, 0.05 error goal). Used with
its default recommended parameter values mentioned in [61],
DWM generated 669 (average over 100 repetitions) classifiers
on this database.
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TABLE VII
IMAGE-SEGMENTATION DATA CLASS-SPECIFIC AND OVERALL PERFORMANCES (FIXED ENSEMBLE SIZE)
Class> B S F c w P G Gen. Perf.
+ 42.3%+0.9%
c
§ 45.6%+0.8%
| 54.2% +1.5%
=y TS, 98% 100% 98% 0% 0% 0% 0% 42.3%+0.9%
8 TS, 98% 100% 97% 60% 50% 0% 0% 57.9%+0.7%
©
o0 TS, 98% 100%  93% 75% 67% 21%  25% 68.4%10.9%
' 42.4%+0.9%
2 X 61.3%+0.5%
< 71.1%+0.7%
' TS, 99% 100% 90% 0% 0% 0% 0% 41.3%+0.2%
E o~
E “z“ 18, 84% 89% 24% 79% 68% 0% 0% 49.1%+2.2%
o TS5 90% 94% 22% 77% 63% 86% 87% 73.9%%3.4%
* TS, 42.4%20.9%
c
R T8, 65.7%+0.3%
3 TS, 91.0%+0.4%
2 All algorithms use 30 classifiers, except DWM-NB, which uses 352.
TABLE VIII
IMAGE-SEGMENTATION DATA CLASS-SPECIFIC AND OVERALL PERFORMANCES (OPTIMIZED ENSEMBLE SIZE)
Class> B S F (o w P G Gen. Perf.
¢= 754(4.0) 97% 100%  98% 0% 0% 0% 0% 42.2%+1.0%
§ 7S,(10.9)  98% 100% 96% 71% 65% 0% 0% 61.4%+1.0%
-1 TS3(236) 99% 100% 95% 78% 69% 92% 75% 86.8%*1.7%
© T54(40)  98% 100% 97% 0% 0% 0% 0% 42.1%%1.3%
3 TS(6.7) 97% 100% 89% 83% 76% 0% 0% 63.5%%0.4%
©
o 753(94) 98% 99% 89% 73% 70% 99% 96% 89.2%+0.4%
1 754(4.0) 98% 100% 97% 0% 0% 0% 0% 42.1%+1.1%
g X 715,6.7) 97% 99% 85% 89% 85% 0% 0% 65.1%+0.3%
753(8.9) 97% 98% 89% 75% 80% 99% 99% 91.0%+0.5%
' TS41(18) 99% 100%  90% 0% 0% 0% 0% 41.3%+0.2%
§ % TSo(170)  g4% 89% 24% 79% 68% 0% 0% 49.1%+2.2%
o TS3(164)  00% 94% 22% 77% 63% 86% 87% 73.9%+3.4%
I‘: o TS 1(4.0) 99% 100% 98% 0% 0% 0% 0% 42.1%%1.2%
§ Z TS52(45)  98% 100% 90% 89% 84% 0% 0% 64.8%*0.3%
= 7S3(4.5) 98% 100% 93% 72% 75% 100% 99% 89.4%*0.4%
TABLE IX new classes) are learned by the ensembles. However, Learn™,
OCR DATABASE DISTRIBUTION—TWO NEW CLASSES ARE bagging, and arc-x4 could not learn the new classes with fixed
INTRODUCED WITH EACH DATA SET ’ .
number of classifiers: the performances on new classes are
Class> 0 1 2 8 4 5 ¢ 7 8 9 increasingly poorer for these algorithms in subsequent training
S1 124129 124129 0 0 0 0 0 0 sessions, as expected due to the outvoting problem. DWM
S, 124 128 124 128 252 247 0 0O 0 0 ’ p 4 g problem.
S3 124 128 124 128 126 124 371 378 o o  seems to learn new classes relatively well, albeit using 669
Sa 123 128 123 128 126 124 124 126 495 504 classifiers to do so. Learn™T.NC had the best final performance

Test 55 57 55 57 56 55 55 56 55 56

Results are shown in Table X and Fig. 11. All algorithms
start around 40% (four out of ten classes are seen in 1'S) and
progressively improve their performances as new data sets (and

0f 92.3%, and as the class-specific performances indicate, it was
able to learn all classes equally well with just five classifiers
per data set. Fig. 11 provides a comparative visual summary
of the test performances with respect to ensemble size, as each
data set is introduced.
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TABLE X
OCR DATA CLASS-SPECIFIC AND OVERALL GENERALIZATION PERFORMANCES (FIXED ENSEMBLE SIZE)
Class> 0 1 2 3 4

Learn*™

7S,

o

£ TS, 99% 96% 95% 96% 76%
® 15, 99% 95% 96% 96% 91%
D 15, 99% 95% 97% 96% 93%

ARC-X4

o TSy 98% 92% 95% 95% 0%
Z 1S, 91% 83% 94% 92% 96%
S 7S, 90% 79% 95% 93% 95%
B 715, 86% 63% 90% 87% 90%
0
=Z
S
=
©
(]
-

3 All algorithms use 20 classifiers, except DWM-NB, which uses 669.
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Fig. 11. Performance comparison on OCR data (Table IX distribution) as a
function of ensemble size.

As before, we wanted to compare the number of classifiers
each algorithm needs to reach its optimal performance. Table XI
shows the data distribution for this experiment, which now in-
cludes a validation data set. The corresponding results are pre-
sented in Table XII, where the number of classifiers determined
to be optimum on validation data is shown in parentheses for
each training session. Table XII indicates that the overall gener-
alization performances of all algorithms are now very close to
that of each other around 90%-92%, with no statistically sig-
nificant difference among them (except DWM whose perfor-
mance was 82%). However, the ensembles created by Learn™* ™
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5 6 7 8 9 Gen. Perf.
38.7%+0.1%
52.4%+0.7%
66.0%+0.8%
76.1%+0.4%
38.5%+0.1%
84% 0% 0% 0% 0% 54.7%%0.2%
92% 55% 61% 0% 0% 68.7%+0.3%
95% 96% 94% 9% 4% 77.8%+0.2%
38.5%+0.1%
54.6%+0.3%
68.5%+0.4%
79.3%%0.3%
0% 0% 0% 0% 0% 382%%0.1%
92% 0% 0% 0% 0% 54.9%%0.6%
92% 96% 92% 0% 0% 73.3%%0.3%
86% 91% 85% 78% 73% 82.3%%0.3%
38.6%%0.1%
57.7%+0.1%
75.9%%0.2%
92.3% +0.2%
TABLE XI
OCR DATABASE DISTRIBUTION, INCLUDING A VALIDATION SET,
TO DETERMINE T}, FOR EACH ALGORITHM
Class> 0 1 2 3 4 5 6 7 8 9
$1 110 114 110 114 0 0 0 0 0 0
S2 110 114 110 114 224 220 0 0 0 0
S3 110 114 110 114 112 110 330 336 0 0
S4 110 114 110 114 112 110 110 112 440 448

Valid. 55 57 55 57 56 55 55 56 55 56
Test 55 57 55 57 56 55 55 56 55 56

required (on average) 56 classifiers, bagging required 23, arc-x4
required 21, DWM needed 669 (same as before due to automatic
pruning), and Learn™*.NC used only 12 classifiers to reach its
final performance.

An additional experiment was conducted for this data set
(made possible by its larger number of classes), designed to
determine what happens when instances of a previously seen
class are not present in future data sets, and how well the algo-
rithms retain their previous information when such information
is not reinforced. Table XIII shows the data distribution used
to simulate a rather extreme case of such a scenario. Classes
w1, ws, and wyg are no longer present in Ss and S3; w3 and wy
do not appear in Sy; and we and wg instances do not appear
in 83 and S;. As in the first experiment, a fixed number of
classifiers (five) were added to the ensemble in each training
session. Results are shown in Table XIV and Fig. 12. All
algorithms now tend to misclassify instances from classes that
are no longer included in the most recent training session.
However, LearntT.NC is the most robust and able to retain
the most information, while learning new information fastest
(hence, the best stability—plasticity performance). Learn™ ™ .NC
achieved a final performance of 88% followed by arc-x4 and
bagging with 83%. An interesting observation was with DWM:
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TABLE XII
OCR DATA CLASS-SPECIFIC AND OVERALL TEST PERFORMANCES (OPTIMIZED ENSEMBLE SIZE)
Class> 0 1 2 3 4 5 6 7 8 9 Gen. Perf.
. IS4(2.9) 98% 93% 92% 94% 0% 0% 0% 0% 0% 0% 37.9%%0.1%
+E TS, (4.6) 99% 95% 95% 95% 93% 92% 0% 0% 0% 0% 56.9%+0.1%
S TS; (94) 99% 96% 96% 96% 93% 95% 92% 91% 0% 0% 75.9%*0.2%
- TS4(391) 99% 95% 97% 95% 94% 95% 98% 97% 86% 77% 93.4%+0.3%
o TS1(2.5) 99% 93% 90% 91% 0% 0% 0% 0% 0% 0% 37.4%%0.2%
g, TS, (41) 98% 93% 94% 95% 94% 94% 0% 0% 0% 0% 56.9%*0.1%
D 7155 (5.8) 99% 93% 95% 95% 92% 94% 96% 95% 0% 0% 76.0%+0.2%
0 75,(10.9) 99% 88% 95% 94% 92% 93% 98% 97% 91% 88% 93.3%+0.3%
" IS4 (2.7) 99% 94% 90% 93% 0% 0% 0% 0% 0% 0% 37.7%*0.1%
X TS, (42) 98% 94% 93% 93% 96% 96% 0% 0% 0% 0% 57.1%+0.1%
(el':, TS3 (5.9) 97% 91% 93% 92% 91% 94% 98% 98% 0% 0% 75.4%%0.82%
= TS,(8.0) 97% 85% 92% 90% 90% 91% 98% 96% 92% 89% 91.9%+0.4%
m T7S1(41) 98% 92% 95% 95% 0% 0% 0% 0% 0% 0% 382%%0.1%
; TS,(82) 91% 83% 94% 92% 96% 92% 0% 0% 0% 0% 54.9%%0.6%
= TS3(134) 90% 79% 95% 93% 95% 92% 96% 92% 0% 0% 73.3%+0.3%
o TS4(412) 86% 63% 90% 87% 90% 86% 91% 85% 78% 73% 82.3%%0.3%
g TS1(29) 98% 94% 92% 95% 0% 0% 0% 0% 0% 0% 38.1%%0.2%
+7 IS, (29) 97% 91% 93% 93% 97% 96% 0% 0% 0% 0% 56.8%%0.2%
E TS5 (3.1) 96% 90% 93% 92% 88% 92% 99% 99% 0% 0% 74.9%%0.2%
S TS,(37) 97% 82% 92% 89% 90% 89% 97% 94% 96% 96% 92.0%+0.3%
TABLE XIII OCR database with class removal
DATABASE DISTRIBUTION WITH REMOVAL OF CLASSES 1 Y T T : ; i ‘
Class®> 0 1 2 3 4 5 6 7 8 9 E ! =
S 0 257 248 0 0 248 248 0 0 252 0.9 _/—- ! ! ;:g _]
S2 0 0 247 257 0 0 247 252 0 0 ! ! 28 =T
S3 248 0 0 256 0 0 0 252 248 0 & 03| : n:§ g:g l/ ’
S4 247 256 0 0 252 247 0 0 247 252 3 ! 83 - ”
Test 55 57 55 57 56 55 55 56 55 56 - g9 Ly .
LY 8.3 82 / ]
. . .5 3 89 : e
despite large number of classifiers, DWM was unable to retain g % § g :
previous knowledge once that information was no longer being 5 0.6r2 3 ! ! T
reinforced. *Eé sg E .
Also note, in Fig. 12, the transient drop in performance of Ea 0.5} b :
Learntt .NC with the introduction of S5 and S5, which illus- e :\ g i \ ___t::::: Ne
trates how the algorithm tries to balance learning new informa- 0.4| : ! —— Learn++. NI
tion and retaining existing information in this harsh scenario. i | Bagging
Consider, for example, the transition from 7'S5 to T'S3, where oi3l_s . E . . ! . L —®Arc-x4
S3 introduces two new classes (wp,ws) and leaves out five of T2 4 6 8 10 12 14 16 18 20

the seven classes seen thus far (about 70% of prior knowledge).
The classifiers trained on S35 are bound to mislabel instances
from the omitted classes. Now, if these instances are predom-
inantly (or unanimously) mislabeled as one of the new classes
(say, wg), the votes of older classifiers that have not seen wg
(denoted Eg) are reduced (to prevent “correct” ws decisions
being outvoted). However, when there is only one new classifier
during the transition, an incorrect decision of choosing wg is de
facto unanimous, resulting in class-specific confidence Py = 1.
Then, the weights of £y classifiers are annulled by (11)—hence
the drop in ensemble performance on omitted classes. However,
with additional diverse classifiers in T'S3, incorrect decisions
are no longer unanimous (P < 1), allowing earlier classifiers
to vote when they choose one of the omitted classes. In fact,
the algorithm quickly recovers with the second classifier; and
the ensemble performance improves significantly with addition

Number of classifiers

Fig. 12. Performance comparison on OCR data (Table XIII distribution, with
class removal).

of subsequent classifiers. Note that this transient condition that
borders the worst-case scenario described earlier, only occurs
when multiple classes are added and removed at the same time
(resulting in little or no overlap among classes seen by different
ensembles), and only for the first (or first few) classifiers trained
after such a drastic change.

One final observation: Fig. 12 indicates that the final perfor-
mances of arc-x4 and bagging are on an upward trend (after five
classifiers during 7'S,), whereas Learn™ ™ NC performance ap-
pears to level off. Knowing from previous results that other al-
gorithms need additional classifiers to overcome the outvoting,
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TABLE XIV
OCR DATA CLASS-SPECIFIC AND OVERALL TEST PERFORMANCES FOR TABLE XIII DISTRIBUTION
Class-> 0 1 2 3 4 5 6 7 8 9 Gen. Perf.
1S 4 0% 90% 95% 0% 0% 91% 99% 0% 0% 94% 46.8%%0.2%
IE 15, 0% 64% 97% 87% 0% 60% 100% 95% 0% 36% 54.1%+0.6%
g T8 3 65% 19% 94% 96% 0% 22% 99% 99% 60% 5% 55.8%%0.6%
15 4 98% 78% 87% 93% 9% 79% 98% 98% 89% 52% 77.8%+0.5%
> TS 4 0% 90% 95% 0% 0% 91% 99% 0% 0% 93% 46.7%*0.1%
cE» 15, 0% 82% 97% 82% 0% 75% 100% 94% 0% 49% 57.9%+0.4%
2 1S 5 67% 66% 96% 95% 0% 45% 99% 99% 45% 9% 62.0%%0.4%
@ TS 4 99% 86% 90% 89% 24% 86% 98% 98% 85% 72% 82.8%+0.4%
- TS 4 0% 90% 96% 0% 0% 91% 99% 0% 0% 93% 46.7%*0.1%
> 18 , 0% 82% 97% 92% 0% 63% 99% 96% 0% 27% 55.9%%0.4%
g TS 5 85% 68% 93% 96% 0% 40% 99% 99% 60% 8% 64.8%+0.5%
TS 4 99% 88% 76% 83% 37% 88% 95% 94% 90% 82% 83.2%+0.4%
<« IS, 0% 84% 95% 0% 0% 92% 97% 0% 0% 95% 46.1%+0.1%
a
; 1S, 0% 0% 97% 96% 0% 0% 99% 98% 0% 0% 39.1%+0.8%
= TS 3 97% 0% 3% 95% 0% 0% 3% 98% 96% 0% 39.2%%0.6%
a TS 4 91% 79% 0% 5% 91% 88% 0% 5% 82% 87% 52.9%*1.7%
g TS, 0% 90% 96% 0% 0% 91% 99% 0% 0% 94% 46.8%%0.1%
t’ 15, 0% 78% 95% 81% 0% 70% 99% 81% 0% 43% 54.8%+*0.4%
c
= s 97% 46% 79% 82% 0% 72% 81% 82% 79% 68% 684%+0.6%
© 3
3, 15 4 98% 86% 84% 86% 87% 87% 95% 92% 89% 73% 87.7%+0.3%
+ All algorithms use 20 classifiers, except DWM-NB, which uses 412.
OCR database with class removal
1 T T T T T T T T T
i ! 3!
1 I [N
A A e,
s 08| i é: 8l “ns]
! 7 2! 8
7 & £ 4
2 -g. @ 1
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Fig. 13. Performance comparison on OCR data (Table XIII dist.) with additional classifiers in 7'Sy.

we allowed additional classifiers to be generated during 7'Sy.
Fig. 13 illustrates the performances as a function of the en-
semble size, which shows a sharp decline in bagging and arc-x4
performances. Ironically, trying to avoid outvoting on new class
in stances by adding many new classifiers causes another form
of outvoting: forgetting previous classes, primarily for bagging
and arc-x4. Recall from Table XIII that TS does not have any
instances from four previously seen classes (w2, w3, wg, and
w7). When too many classifiers are trained during 7Sy, these
classifiers improve their performance on the currently avail-
able classes, but start (incorrectly) outvoting previous classi-

fiers trained on those four classes to which the new classifiers do
not have access. In other words, earlier classifiers can no longer
maintain enough votes to have the overall ensemble continue to
perform well on those four classes absent in T'S,. Learnt™t .NC
does not have this problem, because the classifiers can deter-
mine the classes on which they are not trained, by looking at
the decisions of other classifiers trained on those classes. Since
Learn™ T .NC forces classifiers to reduce their votes on instances
of classes they do not recognize, the algorithm not only learns
new classes very quickly, but also it never suffers from having
too many classifiers.
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V. CONCLUSION AND DISCUSSION

We introduced Learn™ ™ .NC as an incremental learning algo-
rithm for learning new classes that may later be introduced with
additional data. Learn™".NC creates a new ensemble of clas-
sifiers with each database that becomes available. Classifiers
are then combined by using a novel combination rule, which
allows classifiers to determine whether they are attempting to
classify instances of a previously unseen class, and adjust their
voting weights accordingly. This approach allows Learn™ ™ NC
to avoid the outvoting problem (inherent in the original version
of Learn™™, as well as other voting-based ensemble techniques
used for incremental learning), and prevents proliferation of un-
necessary classifiers.

While Learn™ ™ NC uses significantly fewer classifiers, there
is an additional overhead in each classification due to compu-
tation of instance specific weights. However, the actual cost
of this overhead is substantially less than that of training ad-
ditional classifiers. It is also compensated during testing since
fewer classifiers need to be evaluated and combined. Also worth
noting is that the algorithm is independent of the base classifier,
and can provide incremental learning ability to any supervised
classifier that lacks this ability. This property is important be-
cause it allows the user to choose the particular model or clas-
sification algorithm that best matches the characteristics of the
problem under consideration.

Finally, it is pertinent to discuss the type of problems for
which Learn™ ™ .NC is expected to perform well. In recognition
of the no-free-lunch theorem, we do not claim Learn™+.NC to
be a superior incremental learning algorithm on all applications.
We simply propose it as an effective algorithm for certain types
of incremental learning problems. Specifically, Learnt*.NC is
designed for applications where new data introduce instances of
previously unseen classes, and where formerly acquired knowl-
edge regarding previously seen classes are still pertinent to the
problem. Such applications are not uncommon in real world.
Several applications of this type were mentioned in the Intro-
duction, and several others were featured in the experiments. If
new data do not introduce new classes, Learnt+ .NC can still
be used; though it will have no advantage over its predecessor
Learn*™ on such applications.

Learn* " .NC is also not intended for concept drift problems,
where the data distribution of existing classes change in time
(such as STAGGER [32] or SEA concepts [60]), rendering old
information no longer relevant. Such applications require a built
in forgetting mechanism. Another variation of Learn™ ™, called
Learnt™.NSE (for nonstationary environments), is currently
under development, which includes such a mechanism to detect
and ignore knowledge that is no longer relevant [71], [72].

Theoretical analysis of Learnt™.NC for potential perfor-
mance guarantees, its bias/variance analysis, and its evaluation
on other scenarios of nonstationary learning constitute our
current and future work.
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