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Abstract: The theory and applications of wavelets have undoubtedly dominated the journals in all mathematical, 
engineering and related fields throughout the last decade. Few other theoretical developments in mathematical sci-
ences have enjoyed this much attention and popularity, have been applied to such a diverse field of disciplines, and 
perhaps, have been so blindly misused. What was the missing piece in the great puzzle of signal processing, and 
how did the wavelets fill-in this missing piece? How did it all start, what development stages did it go through and 
what is the state of the art today? Have we reached the saturation, or do we have a long way to go? In this paper, 
we present three overviews in an attempt to answer these questions. In a historical overview, we look at the gene-
sis of the wavelet theory as we take a short chronological journey through the wavelet times. In a technical over-
view, we look at the driving forces that played a key role in the development of the theory of wavelets, and try to 
find out what was so special that brought them to the center stage of scientific journals. In an application overview, 
we look at some of the most creative conventional and non-conventional applications of wavelets. On the conven-
tional front, we discuss such applications as image compression, speech processing, and solution of partial differ-
ential equations.  On the unconventional front, we look at various fields of applications including chemistry, neu-
rophysiology, nondestructive evaluation, fractals, and economics. In particular, we discuss analyzing brain signals 
for the detection of Alzheimer's disease, analyzing ultrasonic weld inspection signals for the detection of cracks in 
piping of nuclear power plants, and analyzing fluctuations of financial markets. Finally, we look at new, notewor-
thy and promising developments, such as wavelet networks, and zero crossing representations, as we conclude 
what appears to be one of the most remarkable success stories of mathematical and engineering sciences: the story 
of wavelets.      © Appeared in IMACS/IEEE CSCC'99 Proceedings, 
Pages:5481-5486 
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1 Introduction 
A mathematician comes up with a good idea, devel-

ops a concrete theory, faces great opposition from other 
prominent figures in the area, but continues to work nev-
ertheless. Then come in engineers and physicists, refor-
mulate and modify that theory to make it more accessi-
ble, and eventually that idea becomes a standard tool for 
many researchers in many fields. Does this story sound 
familiar? The history of mathematics and engineering is 
full of such stories, but the similarity between two par-
ticular ones is quite striking.   

In 1807, a French mathematician, Joseph Fourier, 
discovered that all periodic functions could be expressed 

as a weighted sum of basic trigonometric functions. 
His ideas faced much criticism from Lagrange, Leg-
endre and Laplace for lack of mathematical rigor and 
generality, and his papers were denied publication. It 
took Fourier over 15 years to convince them and pub-
lish his results. Over the next 150 years his ideas 
were expanded and generalized for non-periodic 
functions and discrete time sequences. The fast Fou-
rier transform algorithm, devised by Cooley and 
Tukey in 1965 placed the crown on Fourier trans-
form, making it the king of all transforms. Since then 
Fourier transforms have been the most widely used, 
and often misused, mathematical tool in not only 
electrical engineering, but in many disciplines requir-
ing function analysis.  
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This crown however, is about to change hands. Fol-
lowing a remarkably similar history of development, the 
wavelet transform is rapidly gaining popularity and rec-
ognition. With applications ranging from pure mathemat-
ics to virtually every field of engineering, from astrology 
to economics, from oceanography to seismology, wavelet 
transforms are being applied to such areas where no other 
transform has ever been applied. 

 
This paper is about the success story of wavelet 

transforms, and we look at this story from three different 
perspectives. From a historical perspective, we trace the 
development of wavelet theory from its early stages to 
where it is today in a chronological journey. From a 
technical perspective, we review the driving forces be-
hind the wavelet theory, and compare wavelets to some 
of the other techniques that attempt to solve the same 
problem as wavelet transforms. Our aim in doing so is to 
show some of the reasons that brought this unparalleled 
fame and attention to wavelet transforms. Finally, from 
an application perspective, we summarize many conven-
tional and non-conventional applications, and hope to 
form a bridge between researchers using the same tool 
for seemingly unrelated applications. 

In recognition of the audience, the purpose of this 
paper is not to give a rigorous technical tutorial in wave-
lets, but rather a very non-formal overview of the field. 
Furthermore, it is not even intended to be complete or 
exhaustive. Considering that this overview is written by a 
freshman researcher, who was still in grade school by the 
time the modern theory of wavelets were laid out, such a 
goal would be too ambitious, and considering the space 
restrictions, such a goal would be impossible to achieve. 
Consequently, and due to tone of this paper, references 
are mostly omitted, except for certain applications men-
tioned in the last section, and a few general ones for the 
historical development of wavelets. With apologies for 
omitting many of the prominent names who made wave-
lets possible today, my goal in writing this paper is there-
fore two folds: to present a rather personal and perhaps a 
-behind the scenes- historical overview, and to point out 
to many different areas of applications of wavelets in an 
attempt to be a source of inspiration for new develop-
ments and applications.  

2 A Historical Overview of Wavelets1, 2  
The original idea belongs to Fourier: Approximate a 

complex function as a weighted sum of simpler func-
tions, which themselves are obtained from one simple 
prototype function. The prototype function, also known 

as basis function, can then be though of as a building 
block, and the original function can be approximated, 
or under certain conditions be fully represented, by 
using similar building blocks. There are many advan-
tages to such approximations and representations, as 
they provide valuable insight to analysis of compli-
cated functions. Furthermore, if only a few of these 
building blocks renders good approximation, then 
significant compression can be obtained for the rep-
resentation of the original function. Fourier used si-
nusoids of varying frequencies as building blocks and 
this representation provided us with the frequency 
content of the original function / signal. Fourier rep-
resentations have been used in a variety of fields that 
called for signal analysis. However, these representa-
tions had one major drawback due to using sinusoids 
as basis functions. Sinusoids have perfect compact 
support in frequency domain, but not in time domain. 
In other words, they stretch out to infinity in time, 
and therefore, they cannot be used to approximate 
non-stationary signals. Note that the time domain 
representation of a signal does not provide any quan-
titative information about the spectral content of the 
signal. On the other hand, the Fourier representation 
only provides such spectral content with no indica-
tion about the time localization of the spectral com-
ponents. Therefore, the analysis of non-stationary 
signals, whose spectral content change in time, re-
quires a time-frequency representation (TFR), rather 
than just a frequency representation. 

The first modification to the Fourier transform to 
allow analysis of non-stationary signals came as the 
short time Fourier transform (STFT). The idea be-
hind the STFT was segmenting the signal by using a 
time-localized window, and performing the analysis 
for each segment.  Since the Fourier transform was 
computed for every windowed (that is, time-
localized) segment of the signal, STFT was able to 
provide a true time-frequency representation. Dennis 
Gabor, who was interested in representing a commu-
nication signal using oscillatory basis functions in a 
time frequency plane, was the first one to modify the 
Fourier transform into STFT in 1946. Shortly after, 
in 1947, Jean Ville devised a similar TFR for repre-
senting the energy of a signal in the time-frequency 
plane (the Wigner-Ville transform).  Many other 
TFRs have been developed between late 1940s and 
early 1970s, each of which differed from the other 
ones only by the selection of the windowing function. 

However, all these TFRs suffered from one ma-
jor drawback: they all used the same window for the 



 

analysis of the entire signal. In late 1970s, J. Morlet, a 
geophysical engineer, was faced with the problem of ana-
lyzing signals which had very high frequency compo-
nents with short time spans, and low frequency compo-
nents with long time spans. STFT was able to analyze 
either high frequency components using narrow windows 
(wideband frequency analysis), or low frequency compo-
nents using wide windows (narrowband frequency analy-
sis), but not both. He therefore came up with the ingen-
ious idea of using a different window function for analyz-
ing different frequency bands. Furthermore, these win-
dows were all generated by dilation or compression of a 
prototype Gaussian. These window functions had com-
pact support both in time and in frequency (since the 
Fourier transform of a Gaussian is also a Gaussian). Due 
to the "small and oscillatory" nature of these window 
functions, Morlet named his basis functions as wavelets 
of constant shape. Just like Fourier, however, Morlet also 
faced much criticism from his colleagues. In 1980, look-
ing for help to find a mathematically rigorous basis to his 
approach, Morlet met A. Grossman, a theoretical physi-
cist of quantum mechanics who helped him to formalize 
the transformation and devised the inverse transforma-
tion. Little did they know, however, that the wavelet 
transform they developed was merely a rediscovery, and 
perhaps a slightly different interpretation of Alberto Cal-
derón's 1964 work on harmonic analysis.  

Yves Meyer, a French mathematician, who noticed 
the similarity between Morlet's and Calderón's work in 
1984, also noticed that there was a great deal of redun-
dancy in Morlet's choice of basis functions (which were 
then known as wavelets). Fascinated by this elegant non-
stationary function analysis scheme, Meyer started work-
ing on developing wavelets with better localization prop-
erties. In 1985, he constructed orthogonal wavelet basis 
functions with very good time and frequency localization. 
Quite ironically, however, it turned out that another har-
monic analyst, J.O. Strömberg had already discovered the 
very same wavelets about five years ago. Also it should 
be added that neither Meyer, nor Strömberg were the first 
two discover orthonormal wavelet basis functions. That 
honor goes way back to 1909, to a German mathemati-
cian, Alfred Haar. Although Haar wavelets are the first 
and the simplest orthonormal wavelets, they are of little 
practical use due to their poor frequency localization. 
Again, as a twist of history, it was later discovered that 
Haar's work on developing orthonormal basis functions 
were expanded in 1930s by Paul Levey, who was study-
ing random signals of Brownian motion, and independ-
ently by Littlewood and Paley, who were working on 
localizing the contributing energies of a function.  

In the mean time, Ingrid Daubechies, a former 
graduate student of Grossman at the Free University 
of Brussels, developed the wavelet frames for discre-
tization of time and scale parameters of the wavelet 
transform, which allowed more liberty in the choice 
of basis functions at an expense of some redundancy. 
Daubechies, along with Stephane Mallat, is therefore 
credited with developing the transition from continu-
ous to discrete signal analysis. In particular, in 1986 
Mallat, a graduate student at Upenn, developed the 
idea of multiresolution analysis (MRA) for discrete 
wavelet transform (DWT) with Meyer, which later 
became his Ph.D. dissertation in 1988. The idea was 
decomposing a discrete signal into its dyadic fre-
quency bands by a series of lowpass and highpass 
filters to compute its DWT from the approximations 
at these various scales. This idea, on the other hand, 
was all too familiar to electrical engineers for about 
twenty years under the name of quadrature mirror 
filters (QMF) and subband filtering, which were de-
veloped by A. Croisier, D. Esteban and C. Galand 
around 1976. Mallat's work constituted a natural ex-
tension of time localization to the well-established 
frequency localization idea of QMF and subband 
coding. Also in 1988, with the development of 
Daubechies' orthonormal bases of compactly sup-
ported wavelets, the foundations of the modern 
wavelet theory were laid. 

The last ten years mostly have witnessed a search 
for other wavelet basis functions with different prop-
erties and modifications of the MRA algorithms. In 
1992, Albert Cohen, Jean Feauveau and Daubechies 
constructed the compactly supported biorthogonal 
wavelets, which are preferred by many researchers 
over the orthonormal basis functions, whereas R. 
Coifman, Meyer and Victor Wickerhauser developed 
wavelet packets, a natural extension of MRA. 

3 A Technical Overview of Wavelets3 
The earliest form of function representation using 

orthogonal basis functions is undoubtedly the Fourier 
series for continuous and periodic signals: 
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where x(t) is the signal to be analyzed, T is the period 
of the signal, and ck are the Fourier coefficients, rep-
resenting the spectral components of x(t). The com-
plex exponential functions at different discrete fre-
quencies of 2πjk/T are not compactly supported in 
time since they extend to infinity (though they are 



 

perfectly compactly supported in frequency since the 
Fourier transform of an exponential at frequency 2πjk/T 
is a delta function at this frequency). As we noted above, 
this makes the Fourier representation inadequate in ana-
lyzing non-stationary signals. In other words, due their 
infinite time support, complex exponentials analyze the 
signal globally in time, and can only tell what spectral 
components exist in the signal. Fourier representation 
cannot provide any information regarding the time local-
ization of these spectral components. This is not a prob-
lem for analyzing stationary signals, since all spectral 
components exist at all times. For non-stationary signals, 
however, whose spectral content change in time, Fourier 
representation is clearly not appropriate. Unfortunately, 
most signals encountered in practice, regardless of their 
source, are non-stationary in nature. Many people who 
did not realize this shortcoming, blindly (mis)used Fou-
rier representation for analyzing non-stationary signals. 

The STFT was a much needed modification which al-
lowed analysis of non-stationary signals by segmenting 
them into -stationary enough- short pieces, and comput-
ing the Fourier representation of each piece: 
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where w(t) is the windowing function, f  and τ are fre-
quency and translation (time) parameters respectively, * 
is the complex conjugate operator, and S(τ,f) is the STFT 
of x(t) at frequency f and translation τ. Note that for each 
frequency f, time localization is obtained through seg-
menting  x(t) by w(t-τ), the windowing function centered 
at t=τ. The Fourier transform of this segmented signal 
then provides the frequency localization, which is what 
Fourier transform does best.  

The problem with this approach is that it provides 
constant resolution for all frequencies since it uses the 
same window for the analysis of the entire signal. If the 
signal to be analyzed has high frequency components for 
a short time span, a narrow window (compactly sup-
ported in time) would be necessary for good time resolu-
tion. Note, however, that narrow windows mean wider 
frequency bands, resulting in poor frequency resolution. 
If, on the other hand, the signal also features low fre-
quency components of longer time span, than a wider 
window need to be used to obtain good frequency resolu-
tion (at the expense of time resolution).  

This was precisely the driving force behind the wave-
let transform (WT), which provides varying time and fre-
quency resolutions by using windows of different 

lengths. In essence, WT actually does the opposite of 
STFT by first decomposing the signal into frequency 
bands, and then analyzing them in time: 
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where a>0 and b are scale and translation parame-
ters, respectively, ψ  is the mother wavelet, Cψ is a 
constant that depends on ψ,  and W(a,b)  is the con-
tinuous wavelet transform of x(t). Note that we can 
interpret Equation 3 as an inner product of x(t) with 
the scaled and translated versions of the basis func-
tions ψ: 
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Note that scaled and translated versions of the 
basis functions are obtained from one prototype func-
tion, the mother wavelet. It is also worth mentioning 
that the name wavelet originates from the admissibil-
ity condition, which requires the basis functions to be 
of finite support (small) and of oscillatory (wavy) 
nature, hence wavelet (small wave).  

To obtain the DWT, the paprameters a and b  
need to discretized. Daubechies showed that discre-
tizing by a=2j and b=2jk  will yield orthonormal ba-
sis functions for certain choices of ψ (Daubechies 
wavelets) 
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Mallat showed that MRA can then be used to obtain 
the DWT of a discrete signal by iteratively applying 
lowpass and highpass filters, and subsequently down 
sampling them by two. Figure 1 shows this proce-
dure, where g[n] and h[n] are the highpass and low-
pass filters, respectively. Also shown in the figure are 
frequency bands (in terms discrete frequencies) for 
each level. At each level, this procedure computes 
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with N being the total number of samples in x[n]. 



 

 
Figure 1. Computing DWT by MRA 

The original signal can be reconstructed by following 
the exact opposite steps, or by computing 
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where yhigh and ylow are the outputs of highpass and low-
pass filters, respectively, at each level. 

So what made the wavelet transform so popular? 
There are a number of reasons.  Wavelet transforms pro-
vide what many researchers needed for a very long time: 
A systematic approach for analyzing non-stationary sig-
nals. Although various other TFRs existed for over five 
decades, they had their own limitations. For example, 
many, including STFT, are not able to analyze signals 
with both sharp transitions and slowly varying spectra. 
This is because these TFRs are based on computing win-
dowed Fourier transforms using a constant window.  
Many other TFRs, on the other hand, are quadratic or 
non-linear in nature with computational difficulties. 
Wavelet transform is the only linear transform that can 
analyze non-stationary signals at varying resolutions by 
decomposing the signals into their frequency bands. Fur-
thermore, DWT is a very fast algorithm with polynomial 
time and space complexity, which makes it even more 
appealing. 

4 An Application Overview of Wavelets 
The application areas for wavelets have been grow-

ing for the last ten years at a very rapid rate. Reviewing 
all of them in a couple of pages is certainly not possible. 

The purpose of this section is to point out to various 
areas that wavelets can be used, and hopefully be a 
source of inspiration for new research. 
Data Compression4: Apart from its original inten-
tion of analyzing non-stationary signals, wavelets 
have been most successful in image processing and 
compression applications. Subband coding have long 
been used for compression, so using DWT has been a 
natural extension. Due to the compact support of the 
basis functions used in wavelet analysis, wavelets 
have good energy concentration properties. Most 
DWT coefficients usually are therefore very small, 
and they can be discarded without incorporating a 
significant error in the reconstruction stage.  
Denoising: Compression property has been further 
explored by Iain Johnstone and David Donoho5 for 
denoising applications, and they have devised the 
wavelet shrinkage denoising (WSD). The idea behind 
WSD is based on recognizing that noise will show 
itself at finer scales, and discarding the coefficients 
that fall below a certain threshold at these scales will 
remove the noise.  
Source and Channel Coding6: Wavelets fit natu-
rally into source coding and channel coding prob-
lems, since source coding requires developing a very 
compact representation of the information to be 
transmitted, and channel coding requires incorporat-
ing controlled amounts of redundancy into the repre-
sentation to reduce the ill-effects of channel noise. 
Biomedical Engineering: Due to the very nature of 
all biological signals being non-stationary, wavelets 
have also enjoyed great success in biomedical engi-
neering. Wavelets have been used for the analysis of 
electrocardiogram for diagnosing cardiovascular dis-
orders, and of electroencephalogram for diagnosing 
neurophysiological disorders, such as seizure detec-
tion, or analysis of evoked potentials for detection of 
Alzheimer's disease7. Wavelets have also been used 
for the detection of microcalcifications in mammo-
grams and processing of computer tomography and 
magnetic resonance images. 
Nondestructive Evaluation: Another interesting 
area of applications has been nondestructive evalua-
tion (NDE). Wavelets have been successfully used 
for the analysis of ultrasonic and eddy current NDE 
signals for flaw detection in various media such as 
nuclear power plant tubings8, gas pipelines, aircraft 
components, etc. 
Numerical Solution of PDEs: Partial differential 
equations have been successfully discretized by using 
wavelets as basis functions, and then solved numeri-



 

cally. This also gave rise to new methods in finite ele-
ment analysis. 
Study of Distant Universes9: One of the more uncon-
ventional applications of wavelets has been on hierarchi-
cal organization of distant galaxies. Recognizing that dis-
tribution of galaxies forms hierarchical structures at vari-
ous scales, Albert Bijaoui developed a multi-scale vision 
model using wavelets for classifying each component in 
this hierarchy. 
Wavelet Networks: The success of radial basis function 
(RBF) neural networks for function approximation was a 
good indicator of this yet another field of application of 
wavelets. The excellent time and frequency localization 
properties of wavelets as basis functions replaced Gaus-
sian functions of RBF networks. In their pioneering 1993 
paper, Bakshi and Stephanopoulos10 showed that neural 
networks using wavelets as basis functions are particu-
larly efficient in learning from sparse data, since using a 
higher resolution of the space when the data is dense, and 
a lower resolution when data is sparse also fit naturally 
into multiresolution wavelet analysis scheme. More re-
cently, Bernard, Mallat and Slotine proposed wavelet 
interpolation networks capable of real time learning of 
unknown functions. 
Zero Crossing Representation: Discovered by David 
Marr in early 1980s, and developed by Mallat in late 
1980s, zero crossing representations of wavelet coeffi-
cients have also found significant applications in signal 
classification, computer vision, data compression and 
signal denoising2. More recently M. Afzal devised a new 
approach for shift invariant, unique and complete repre-
sentation of signals using zero crossings of wavelet based  
multi resolution decompositions of time domain signals. 
Fractals: Certain wavelets, such as the Daubechies 
wavelets have a fractal (self-similar) structure, and when 
combined with multiresolution formulation, they provide 
a very natural way of analyzing fractals. Marie Farge, G. 
Wornell and Alan Oppenheim have successfully applied 
wavelets to fractal analysis4. 
Turbulence Analysis2: Again due to the multiresolution 
analysis properties of wavelets, there has been significant 
effort applying them to analysis of turbulent flow of low 
viscosity fluids flowing at high speeds. In particular, ef-
forts are underway to solve Navier-Stokes equations us-
ing wavelet based numerical techniques by Marie Farge 
and Gregory Beylkin 
Financial Analysis: Financial and economic data, such 
as stock prices, are usually analyzed in either time or fre-
quency domain. Since these data are often in the form of 
highly non-stationary time series, simultaneously analyz-
ing time and frequency dependencies using multiresolu-

tion wavelet analysis provide valuable insight to fi-
nancial communities. 

5 Conclusions 
Wavelet analysis has enjoyed a tremendous at-

tention and success over the last decade, and for a 
good reason. Almost all signals encountered in prac-
tice call for a time-frequency analysis, and wavelets 
provide a very simple and efficient means of per-
forming such an analysis. So what is next? The theo-
retical developments of wavelets have been largely 
completed over the last two decades (or may be we 
should say over the last 90 years!). The previous list 
of applications of wavelets is by no means complete 
or exhaustive, and considering the endless variety of 
non-stationary signals that are commonly encoun-
tered in engineering, mathematical and natural sci-
ences, it is not difficult to estimate that there will be 
significant search for new fields of applications.  
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