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A few years ago ab initio calculations, 
i.e., ones involving rigorous solution of some approxi- 
mate formulation of the Schrodinger equation, could 
be carried out only for the simplest molecules, and even 
these taxed the capabilities of existing digital com- 
puters. Recently, however, this kind of approach has 
been extended to molecules large enough to be of chem- 
ical interest, partly through the development of more 
powerful computers (e.g., the CDC 6600) partly potential energy due to their coulombic interaction; 

through technical improvements in computationa~ the Hamiltonian'operator (H) is therefore a sum of the 
~rocedures. corresponding operators, i.e. 

These calculations are based on the Roothaan 
method, an approximation to the Hartree-Fock self- 
consistent field (SCF) treatment in which the individ- 
ual orbitals $p are approximated by linear comb'ma- 
tions of a set of assumed functions +r 

*,. = C a,.,+; 
i 

(1) 

The coefficients apt are found by solving a set of simul- 
taneous algebraic equations (Roothaan's equations), 
derived by the variation method. The basis set func- 
tions 4% are usually a: set of AO's of the component 
a t o m  (LCAO approximation). By using a sufficiently 
large basis set, this approach can apparently he made 
to give results virtually identical with those that would 
be given by a rigorous Hartree-Fock treatment. 

While the results of such calculations are subject to 
large errors, due to the neglect of electron correlation 
inherent in the SCF approach, they are already proving 
of interest in a number of connections and there is also 
reason to believe that the correlation problem may be 
solved in due course. In the meantime semiempirical 
treatments, based on the Roothaan approach, are 
proving very promising. It therefore seems clear that 
an understanding of these procedures will soon become 
essential to anyone concerned with the progress or 
application of chemical theory. 

Several good accounts of the Roothaan method 
are now available in book form (1); these, however, 
have usually been formal in nature and have lacked 
illustration by sufficient specific examples. The pur- 
pose of this paper is to remedy this deficiency by a 
detailed discussion of the hydrogen molecule, using the 
SCF LCAO MO formalism. 

LCAO MO Formalism for H2 

The hydrogen molecule is composed of two protons 
(A and B) and two electrons (1 and 2); we use the fol- 
lowing notation for the interparticle distances. The 
total wave function * of H2 is an implicit function 
of the twelve coordinates (XA, y ~ ,  a; XB, YE., ZB; XI, y ~ ,  z~ 
x2, y,, z2) of the four particles. The total energy is a 
sum of the kinetic energies of the particles and the 

where the kinetic energy operators for nuclei (TN) and 
electrons (TE) are given by 

M and m being the masses of a proton and an electron, 
respectively. The internuclear (GNN), nuclear-elec- 
tronic (GNE), and interelectronic (GEE) potential 
energies are given by 

We now assume that the motion of the electrons can 
be represented by an elect.ronic wavefunction T that 
depends on the positions of the nuclei but not on their 
velocities (Born-Oppenheimer approximation) ; this 
is equivalent to the assumption that * commutes with 
TN, or that TN* is neghgible. 

In that case 
Q = 93 ( 5 )  

where the electronic wavefunction is a function of the 
electronic coordinates, the nuclei being fixed, and the 
nuclear wave function % is a function of the positions 
of the nuclei. The total energy @ for a given fixed 
position of the nuclei is then 

where EE is the total energy of the electrons moving in 
a fixed potential field due to the fixed nuclei. Thus 

where the electronic Hamiltonian HE is given by 
HE = TE + GNE + GEE (8) 

we can write this in the form 
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where the core Hamiltonians HIC and HzC are given by 

The core Hamiltonian HC represents the sum of the 
kinetic energy of an electron and its potential energy 
due to attraction by the nuclei; it is therefore a fnnc- 
tion of the coordinates of one electron only. 

Next we make the orbital approximation, which 
assumes that the motion of each clectron i can he repre- 
sented by an individual one-electron wave function 
$*. The probability of finding the electron in a given 
volume element drr  is then $tzd7c. This approxima- 
tion thus involves neglect of electron correlation, i.e., 
the tendency of electrons to correlate their motions in 
such a way as to  minimize their mutual repulsions. 
The one-electron functions mnst also include a descrip- 
tion of the spin of electrons; we write them as spin 
orbitals where Gi is a function of the space coordi- 
nates (xi, y,, zi) and the spin function oi has one of two 
values (a  or B ) .  The electronic wave function for HZ is 
then written as a Slater determinant 

The superscript denotes the electron occupying the 
spin orbital in question. 

The final approximation is to write the orbitals $,, 
as linear combinations of basis set functions $, (eqn. 
(1)) which are usually taken to be SCF AO's of the in- 
dividual atoms. The coefficients a,< are normally 
found by solving a set of simultaneous algebraic equa- 
tions (Roothaan equations). In  the case of Hz, the 
problem is simplified by the presence of a plane of 
symmetry bisecting theline joining the nuclei; the MO's 

and $2 mnst be symmetric, or antisymmetric, for re- 
flection in this plane. 

Electronic Wave Functions of H2 

We will use a minimum basis set, i.e., a set of AO's 
corresponding to the naive conventional picture of 
inner and valence shell AO's; in HZ this corresponds 
to  the 1s AO's of two atoms, given by 

where r* and rs are the distances of the electrons from 
their respective nuclei, measured in atomic units (a.u.) 

where a. is the radius of the smallest Bohr orbit for 
hydrogen. In  this system of units, which we will use 
henceforth, the mass of the electron and the electronic 
charge are taken to be unity. 

From symmetry (see above), the only MO's that can 
be constmcted from $1 and $2 are 

where the overlap inteyral Slz is given by 

Sn = J +hdr  (19) 

The unit of energy in a.u. is the Hartree 

e' 
1 a.u. (Hartree) = - = 27.210 eV = 627.71 kcal/mole (20) 

a0 

This is twice the ionization potential of a hydrogen 
atom. In  a x .  the core operator HC (eqns. (10) and 
(11)) and the operator GEE (eqn. (4)) become 

1 1 1  H C  = -.vI - - - - 
2 ra IB 

(21) 

The two electrons in HZ can occupy the MO's $I and 
$,in six different ways 

' x ,  X, X6 lxg 

Each of these configurations is represented by a Slater 
determinant (eqn. (12)) 

(29) 

The shorthand notation, e.g., ll+B1ll is self-explana- 
tory; here the overbar denotes p spin, lack of it a spin. 

Four of the determinants ('XI, 3xa2 axs, 'xs) can, as 
indicated, be factored into products of a space part and 
a spin part; these are all eigenfnnctions of the opera- 
tors S. (representing the component of spin momentum 
along the z axis) and SZ (representing the square of 
the total spin) and so can serve as representation of HZ 
(for details see reference ( Ic ) ) .  Thus 

S2('x,) = Sy'x,) = S*('x,) = S,('xs) = 0 (30) 
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Obviously 'XI and Ixa correspond to singlet states with 
the electrons paired; 3x2 and axa represent substates 
of a triplet (total spin f i )  with the spin vector parallel, 
or antiparallel, to the z axis. 

The remaining two determinants (x4 and xs) are 
eigenfunctions of S,, with eigenvalue zero, but not of 
S2. However we can constmct linear combination of 
them that are 

It is easily seen that 

syax4 = a/&s(8x4) (35) 
S.("xr) = 0 

S ~ ~ X S )  = SI('xd = 0 (36) 

Thus 'xs represents a third singlet state, in which the 
electrons are in different RIO's but with paired spins, 
while 3xr represents the third substate of the triplet, with 
total spin h but with the spin vector perpendicular to 
the z axis (so that the component of spin along the 
z axis is zero). 

The hydrogen molecule belongs to the D,, point 
group. Since the AO's $1 and 4% are tolally symmetric 
for rotation about the internuclear axis, configurations 
constructed from them must belong to the irreducible 
representations Z,+ or Z,+ (symmetric for rotation 
about the axis, symmetric (g) or antisymmetric (u) for 
reflection in the point bisecting the line joining the 
nuclei). The configurations are classified as 
follows 

z.+: 'XI, 'xs (37) 
Xu+: $x4, 'XI (38) 

The six configurations are derived from only four 
spatial wave functions 81-a 

0, = J . , ~ + I ~  (ground state singlet, 'XI) (39) 

1 
0. = - (+,1+34 + # 2 1 # , z )  (singly excited singlet, 'xs) (41) 

v'z 

These spatial functions can be denoted graphically 
by contour maps in tw.0 dimensions by taking the dis- 
tances of the electrons along the AB line as the two 
coordinates x and y, the contours denoting equal values 
of the function 8. Figure 1 shows such a plot for 81. 
Note that there are four points of maximum (and equal) 
orbital density, corresponding to situations where both 
electrons are near nucleus A, or both near nucleus B, 
or one near nucleus A while the other is near nucleus 
B. A better graphical representation is provided 
by an analogous plot of P, this indicating the proba- 
bility of finding the electrons in various pairs of loca- 
tions, and an even better one by a three-dimensional 
plot with 02  as the z coordinate. Figure 2 represents 
such plots for the peeks correspond to situations 

i 
I 
i 

Figure 1. Contour mop indicating the vmriation of 01 with distances 
Ix, y )  of the two electrons along the line AB. 

of high probability. In this and the other three-di- 
mensional plots shown in this paper the spacing of the 
grid lines is in each case 0.1 a.u. 

Various deductions can be made immediately from 
these diagrams concerning the mode of distribution of 
the electrons between the two hydrogen atoms. Thus 
the regions of high orbital density in Bz correspond to 
situations where when electron 1 is near nucleus A, 
electron 2 is near nucleus B, and conversely, there is 
very little chance of finding the electrons simultaneously 
at  the same end of the molecule. This of course is a 
consequence of the Pauli exclusion principle; electrons 
of the same spin cannot occupy the same point in 
space, so the probability of finding them close together 
is also reduced. The singly excited state of 83 cor- 
responds on the other hand to a "hybrid" of "ionic" 
structures, H+H- u H-H+; here the electrons are 
most likely to be found near the same nucleus. Finally, 
in the ground state 81, or in the doubly excited state 
Oa, the electrons are as likely to be found near different 
nuclei as near the same nucleus; this of course follows 
because in our simple orbital approximation no ac- 
count is taken of the tendency of electrons to keep 
apart, due to their mutual electrostatic repulsion; the 
weighting of "covalent" structures in 02, or "ionic" 
structures in 83 is due to "exchange" correlation, not 
to electrostatic repulsions. 

Energy and Bond Length 

The ground state of H, corresponds to the configura- 
tion 'XI (eqn. (24)). The corresponding electronic 
energy ExE is given (eqns. (7)-(ll), (Zl), and (22)) 

where the integrations are over the space and spin parts 
of each spin orbital, and $,a. Since the wave func- 
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Figure 2. Three dimensional plot. of 13% versus r and y for o, 8,; b, 8~2 e 

tion factors into a product of a space part and a 
spin part, and since the electronic operator contains no 
spin terms, the integral can also be factored 

Since the spin functions are orthogonal, the middle 
term vanishes; if a and P are normalized, the other 
terms are each equal to unity. Hence 

Since HIC is a fuiiction of the coordi~ates of electron 
1 only, and HzC of electron 2 only 

and where ElC is the core energy of an electron oc- 
cupying the h4O 

Substituting for ~I from eqns. (15) and (16) 

1 =- 
2 + 2812 

[HIP + Hszc + HnC + Hxcl (49) 

Where 

from symmetry 
HIP = H$ 
HIP = H Z I C  

Substituting for'HC from eqn. (21) 
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H,,c = S+t(-'/zvta)+,dr (one-center kinetic energy 
integral, TI,) 

+ +,(- $)+c (one-center nuclear attraction 
integral, V d )  

+ S +,(- &)+Id7 (twc-center nuclear attraction 
integral, VtzB) (53) 

Likewise 

= J c$~(-'/nvl')+adr (two-center kinetic energy 
integral, TM) 

5 (two-center nuclear attraction 
integrslls V d ,  VIP) (54) 

All these integrals can be expressed in analytical form, 
using 1s AO's for and (eqn. (13)) 

TI, = I/* (55) 

Tlr = -'/2[& - 2(1 + TAB)~-~*B] (56) 

VllA = -1 (57) 

v,p = -1 + (I + &)e-"As 
r m  (58) 

v,$ = VIP = -(1 + n s ) e c r ~ n  (59) 

S = (1 + + i / k ~ ~ ' ) e - ' ~ n  (60) 

Expanding Jl1 likewise in terms of AO's 

1 
= 4(1 + Sd' [(11,11) + (22,22) + (11,22) + 

(22,ll) + (11,12) + (11,21) + (22,12) + 
(22,211 + (12,ll) + (21,ll) + (12,22) + 
(21,22) + (12,121 + (21,121 +(lZ,Zl) + (21,Zl)I (61) 

where 

From the definition of the integrals 

Also from symmetry 

From eqns. (61)-(64) 

Electron repulsion integrals (ij,kl) usually have to be 
evaluated by numerical integration; however in this 
simple case they can be expressed analytically 

In the last expression, 0.57722 is the approximate value 
of an integral while 

The total electronic energies for the other configura- 
tions (eqns. (25)-(34)) can be found in a precisely similar 
way; the derivations are left to the reader 

Triplet state, 3 ~ 2 ,  

where 

and the exchange integral K12 is given by 

Singly excited singlet state, lx6 

Doubly excited state, 'xe 

where 

- - [1/2(11,11) + 1/*(11,22) + (12,12) - 2(11,12)1 
(1 - Sl# 

(77) 

The total energy (ET) of each of these states is given 
(eqn. (6)) by adding the internuclear repulsion to the 
total electronic energy; in a.u. 

Table 1 gives values for the basic integrals for various 
values of. rAs, and Table 2 values for the quantities 
ElC, ESC, Jn, Jlz, K12, and l/mB. Table 3 shows cor- 
responding values of the total energy for the various 
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Table 1. Basic Integrals for Hz for Various lnternuclear Distances. 

Sn Tn - VnB - VnA (1122) 

a All values in ax. 

Table 2. Molecular Integrals for Hz for Various lnternuclear Distances. 

K12 TAB-' 

a All vduelues in a.u 

Figure 3. Plot of total energy af H2 versus inkrnvdo~r dirtonce 
( rml  for the ground rtote I1.+I, tripletrtats[%lLtl, singly excited singlet 
state ('Z,+l, and doubly excited state I'Z,+l. 

states, while Figure 3 shows a plot of the total energies 
versus the internuclear distance. 

It will be seen that 'XI does correspond, as we have 
assumed, to  the ground state of H1; the minimum in 
the curve should correspond to the equilibrium inter- 
nuclear distance and the depth of the line below the 
limit (HA + He) to the boncl energy. The values 
estimated in this way (0.84 A,-2.65 eV) are in fair 
agreement with experiment (0.74A, 4.74 eV). 

The curve for the singly excited state (%+) also has 
a minimum, implying that it should be a bound state; 
Hz has an absorption hand a t  109 nm corresponding to 
the transition (I&+ -+ '2,+). The observed excitation 
energy (11.4 eV) for the zero-zero transition is in good 
agreement with that estimated from Figure 1 (13.2 eV). 
The other two states have no minima and so correspond 
to  dissociation into hydrogen atoms. 

It will be noticed that the curve for the ground state 
does not converge to  the correct limit (HA + HB) for 
large ~AB; this is because we have represented the system 

Table 3. Total Energies of Various States of H1 at Various 
Internuclear Distances* 

o All values in a.u. 

throughout by the single Slater determinant 'XI. Ex- 
pansion of the space part +l'h2 of lx1 (eqn. (24) gives) 

Thus the wave function +11+12 can be partitioned into 
four equal pafts, corresponding to situations where 
both electrons occupy the A 0  61 (i.e., +11+12), or both 
+Z (i.e., or where they occupy different AO's 
(+I'&~ or +21+~2). This can be seen very clearly fram 
the plots of 01 and el2 in Figures 1 and 2a; the general 
form of these plots is independent of r * ~ .  Obviously 
this cannot be a satisfactory representation because 
dissociation of H1 must give either (He + -H) or 
(H+ + H-), not a "hybrid" of the two. Note that 
dissociation of the triplet 3&+, and of the singly ex- 
cited singlet '&+, is correctly predicted to give a "pure" 
state (H. + .H) or (H+ + H-), while dissociation of 
the doubly excited state again gives a hybrid. The 
reason for this difference will appear presently. 

The total energy (ET) of Hz can he written (eqns. 
(45)-(71)) in the form 
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leads to  two states whose energies (Em) are the roots of 
the secular equation 

The numerator of the first term (A) represents the 
(constant) energy of two hydrogen atoms; A increases 
with decreasing r * ~  due to crowding of the electrons. 
The second term (B) in eqn. (80) represents the mutual 
interaction of the two atoms, due to  classical electro- 
static forces; this term does show an energy minimum 
with decreasing rAs. Figure 4 shows a plot of A, B, 
and ( A  + B) versus r*.; the composite curve shows 
no minimum whatsoever. These terms collectively 
represent the situation that would hold if the electron 
distribution (h)= of the occupied A40 in Hz were a 
simple superposition [(+I)= + (+z)2] of those for the 
component AO's. In  fact there is an additional term 
2 ,  corresponding to  the interference of electron 
waves when the atoms approach; the last term (C) in 
eqn. (80) represents the corresponding correction to the 
"classical" energy. The plots of C, and (A + B + C), 
in Figure 4 show that this nonclassical term accounts 
for the whole of the binding in Hz. This is a special 
case of a general result; chemical binding, in an orbital 
description, arises mainly from terms involving one- 
electron resonance integrals. 

Configuration Inlerachn 

Allowance for electron correlation can be introduced 
into the SCF treatment of a molecule by writing the 
wave function (3 as a linear combination of configura- 
tions x, derived by dist,rihuting the electrons various 
possible ways among the various MO's 

If the molecule has symmetry, the wave function must 
have corresponding symmetry; 0 must then be written 
as a combination of configurations X, that behave in 
the same way under the symmetry operation in ques- 
tion. In  the case of Hz, only configurations which are 
either all gerade (g), or all ungerade (u), can mix, and 
they must also have similar multiplicities in order that 
e can represent a r ed  spin state. Of our four configura- 
for Hz, 'XI and 'xs can mix, being both '2,; the other 
two configurations are both Z,, and they cannot mix 
with one another since they are of different multiplicity. 

This configuration interaction between 'XI and 'xs 

The corresponding coefficients A,, (eqn. (81)) are given 

(HI ,  - Em)Am1 + Hr,A,a = 0 (83) 

Here 

where El" is the total electronic energy of the configura- 
tion 'XI; likewise 

HOB = E,B (85) 

Also 

The first two integrals vanish because GI and J.2 are 
orthogonal while the third is equal to Kls (eqn. (74)). 
Using the expressions for ElE and EnE above, and the 
integrals from Tables 1 and 2, one can calculate the 
energies of the two states (8. and 0,) resulting from 
mixing of 'xl and 'xs and also the coefficients A, and 
As (eqn. (83)). Figure 5 shows plots of the total en- 
ergies of e., O,, '~6, and the triplet state versus r * ~ .  
Note that the g state x, now correctly dissociates into 
(H + .H), while the doubly excited state, like the 
singly excited one, now dissociates into (H+ + H-). 
The minimumin the ground state case leads to esti- 
mates of 0.88 A and 3.23 eV for the equilibrium bond 
length and bond energy. The calculated excitation 
energy remains almost unchanged (13.6 eV). 
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Figure 6 shows how the total electron density varies 
with internuclear separation for the ground state €I., 
using the formalism of Figure 2. Note that the 
"peaks" corresponding to  "ionic" states are now lower 
than those for the "covalent" ones, even at equilib- 
rium, and disappear with increasing r * ~ .  
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Figwe 6. Electron density functions for the gmund state B.: 0, for r ~ s  = 
1.4 a".; b,forme = 3 0.u.; c , f o r r m  = 5 O.Y. 
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